1,102
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Dynamics Simulation of Heavy Metal Ions in Aqueous Solution Using Lennard-Jones 12-6 Potential

, &

References

  • Ali Shah, S. A., Hofer, T. S., Fatmi, M. Q., Randolf, B. R., and Rode, B. M. (2006). A QM/MM MD simulation study of hydrated Pd2+, Chem. Phys. Lett., 426, 301–305.
  • Allen, M. P., and Tildesley, D. J. (1987). Computer Simulation of Liquids, Clarendon Press, Oxford.
  • Andersen, H. C. (1983). Rattle: A velocity version of the shake algorithm for molecular dynamics calculations, J. Comput. Phys., 52, 24–34.
  • Ansari Dezfoli, A. R., Adabavazeh, Z., and Mehrabian, S. (2011). A molecular dynamics simulation investigation into the behavior of water molecules inside carbon nanotubes, J. Nanoeng. Nanosyst., 1, 247–255.
  • Ansari, A.R., Mehrabian, M.A., and Hashemipur, H. (2012). Zinc ion adsorption on carbon nano-tubes in an aqueous solution, Polish Journal of Chemical Technology, 14(3), 29–37.
  • Bastug, T., and Kuyucak, S. (2005). Temperature dependence of the transport coefficients of ions from molecular dynamics simulations, Chem. Phys. Lett., 408, 84–88.
  • Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P. (1987). The missing term in effective pair potentials, J. Phys. Chem., 91, 6269–6271.
  • Berendsen, H. J. C., Postma, J. P., Gunsteren, W. F., DiNola, A., and Haak, J. R. (1984). Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684–3690.
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., and Hermans, J. (1981). Intermolecular Forces, edited by B. Pullmann Reidel, Dordrecht, 331–342.
  • Bounds, D. G. (1985). A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Ca2+, Ni2+, and Cl−, Mol. Phys., 54, 1335–1355.
  • Burkert, U., and Allinger, N. L. (1982). Molecular Mechanics, American Chemical Society, Washington, DC.
  • Chillemi, G., Barone, V., D'Angelo, P., Mancini, G., Persson, I., and Sanna, N. (2005). Computational evidence for a variable first shell coordination of the Cadmium (II) ion in aqueous solution, J. Phys. Chem. B, 109, 9186–9193.
  • Cordeiro, M. N. D. S., Ignaczak, A., and Gomes, A. N. F. (1993). Simulation of water solutions of Ni2+ at infinite dilution, Chem. Phys., 176, 97–108.
  • D'Angelo, P., Barone, V., Chillemi, G., Klaucke, W., and Pavel, N. V. (2002). Hydrogen and higher shell contributions in Zn2+, Ni2+, and Co2+ aqueous solutions: An X-ray absorption fine structure and molecular dynamics study, J. Am. Chem. Soc., 124, 1958–1967.
  • D'Angelo, P., Migliorati, V., Mancini, G., and Chillemi, G. (2008). A coupled molecular dynamics and XANES data analysis investigation of aqueous cadmium (II), J. Phys. Chem. A, 112, 11833–11841.
  • Franks, F. (1973). Water: A Comprehensive Treatise, V.3. Aqueous Solutions of Simple Electrolytes, Plenum Press, New York.
  • Haile, J. M. (1992). Molecular Dynamic Simulation, Wiley, New York.
  • Holovko, M., Druchok, M., and Bryk, T. (2005). Primitive model for cation hydrolysis: A molecular-dynamics study, J. Chem. Phys., 123, 15405–15418.
  • Hu, W., Hu, B., and Jiang, Z. (2006). On-line pre-concentration and separation of Co, Ni, and Cd via capillary micro-extraction on ordered meso-porous alumina by inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 572, 55–62.
  • Inada, Y., Mohammed, A. M., Loeffler, H. H., and Rode, B. M. (2002). Hydration structure and water exchange reaction of Nickel(II) ion: Classical and QM/MM simulations, J. Phys. Chem. A, 106, 6783–6791.
  • Johnson, K. J., Cygan, R. T., and Fein, J. B. (2006). Molecular simulations of metal adsorption to bacterial surfaces, Geochim. Cosmochim. Acta, 70, 5075–5088.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926–935.
  • Kalinichev, A. G., and Kirkpatricka, R. J. (2007). Molecular dynamics simulation of cationic complexation with natural organic matter, Eur. J. Soil Sci., 58, 909–917.
  • Kuzmin, A., Obst, S., and Purans, J. (1997). X-ray absorption spectroscopy and molecular dynamics studies of Zn2+ hydration in aqueous solutions, J. Phys. Condens. Matter, 9, 10065–10078.
  • Lee, S. H., and Rasaiah, J. C. (1994). Molecular dynamics simulation of ionic mobility, I. Alkali metal cations in water at 25°C, J. Chem. Phys., 101, 6964–6974.
  • Marcus, Y. A. (1994). Simple empirical-model describing the thermodynamics of hydration of ions of widely varying charges, sizes and shape, Biophys. Chem., 51, 111–127.
  • Mohammed, A. M., Loeffler, H. H., Inada, Y., Tanada, K., and Funahashi, S. (2005). Quantum mechanical/molecular mechanical molecular dynamic simulation of zinc(II) ion in water, J. Mol. Liq., 119, 55–62.
  • Ruparelia, J. P., Duttagupta, S. P., Chatterjee, A. K., and Mukherji, S. (2008). Potential of carbon nano-materials for removal of heavy metals from water, Desalination, 232, 145–156.
  • Viard, B., Pihan, F., Promeyrat, S., and Pihan, J. C. (2004). Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: Bioaccumulation in soil, Graminaceae and land snails, Chemosphere, 55, 1349–1359.
  • Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A. (1986). An all atom force field for simulations of proteins and nucleic acids, J. Comput. Chem., 7, 230.
  • Wu, J. C., Piquemal, J. P., Chaudret, R., Reinhardt, P., and Ren, P. (2010). Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field, J. Chem. Theory Comput., 6, 2059–2070.
  • Wu, T., Hu, B., Jiang, Z., Feng, Y., Lu, P., and Li, B. (2006). Sol–gel zirconia coating capillary microextraction on-line hyphenated with inductively coupled plasma mass spectrometry for the determination of Cr, Cu, Cd, and Pb in biological samples, Rapid Commun. Mass Spectrom., 20, 3527–3534.
  • Xu, D., Tan, X., Chen, C., and Wang, X. (2008). Removal of Pb(II) from aqueous solution by oxidized multiwall carbon nanotubes, J. Hazard. Mater., 154, 407–416.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.