138
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Kinetic Analysis of Nonisothermal Reduction of Silica-Supported Nickel Catalyst Precursors in a Hydrogen Atmosphere

, , &

References

  • Akahira, T., and Sunose, T. (1971). Joint convention of four electrical institutes, Res. Rep. Chiba Inst. Technol., 16, 22–31.
  • Avrami, M. (1939). Kinetics of phase change. I. General theory, J. Chem. Phys., 7, 1103–1113.
  • Avrami, M. (1940). Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei, J. Chem. Phys., 8, 212–224.
  • Avrami, M. (1941). Kinetics of phase change. III. Granulation, phase change and microstructures, J. Chem. Phys., 9, 177–184.
  • Bartholomew, C. H. (1990). Hydrogen adsorption on supported cobalt, iron and nickel. Catal. Lett., 7, 27–52.
  • Bartholomew, C. H., and Pannell, R. B. (1980). The stoichiometry of hydrogen and carbon monoxide chemisorption on alumina- and silica-supported nickel. J. Catal., 65, 390–401.
  • Bhatia, S., Beltramini, I., and Do, D. D. (1990). Temperature-programmed analysis and its applications in catalytic systems, Catal. Today, 7, 309–438.
  • Bhering, D. L., Nele, M., Pinto, J. C., and Salim, V. M. M. (2002). Preparation of high loading silica-supported nickel catalyst: analysis of the reduction step, Appl. Catal. A: Gener., 234, 55–64.
  • Brown, M. E., Dollimore, D., and Galwey, A. K. (1980). Reaction in the solid state, in Comprehensive Chemical Kinetics, Vol. 22, edited by C. H. Bamford C. F. H. Tipper Elsevier, Amsterdam, pp. 340–341.
  • Brown, M. E. (2001). Introduction to Thermal Analysis: Techniques and Applications, 2nd ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 21–43.
  • Budrugeac, P., Segal, E., Pérez-Maqueda, L. A., and Criado, J. M. (2004). The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal dehydrochlorination of PVC from non-isothermal data, Polym. Degrad. Stab., 84, 311–320.
  • Bulánek, R., and Čičmanec, P. (2008). Kinetics of reduction of Cu ions in MFI zeolite investigated by H2-TPR method, Collect. Czechoslovak Chem. Commun., 73, 1132–1148.
  • Butler, M. A., James, P. F., and Jackson, J. D. (1996). An emulsion method for producing fine, low density, high surface area silica powder from alkoxides, J. Mater. Sci., 31, 1675–1680.
  • Che, M., Cheng, Z. X., and Louis, C. (1995). Nucleation and particle growth processes involved in the preparation of silica-supported nickel materials by a two-step procedure, J. Am. Chem. Soc., 117, 2008–2018.
  • Coats, A. W., and Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data, Nature, 201, 68–69.
  • Coenen, J. W. E. (1958). Onderzoek van technische nikkelkatalysatoren op dragger, Doctoral thesis from the Technische Hogeschool Delft, Delft, The Netherlands, pp. 144–156.
  • Coenen, J. W. E., and Linsen, B. G. (1970). Physical and Chemical Aspects of Adsorbents and Catalysts. Academic Press, London, UK, pp. 25–32.
  • Criado, J. M., Málek, J., and Ortega, A. (1989). Applicability of the master plots kinetic analysis of non-isothermal data, Thermochim. Acta, 147, 377–385.
  • Cvetanović, R. J., and Amenomiya, Y. (1972). Temperature programmed desorption technique for investigation of practical catalysts, Catal. Rev., 6, 21–48.
  • Dalmai-Imelik, G., Leclercq, C., and Maubert-Muguet, A. (1976). Study by electron microscopy and electron diffraction of formation of nickel epitaxially grown catalysts, J. Solid State Chem., 16, 129–139.
  • Delmon, B., and Roman, A. (1973). Kinetic study of the reduction of nickel oxide near its antiferro-magnetic-paramagnetic transition. Influence of the magnetic structure of the reactant on the kinetics of nucleus formation on its surface, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condensed Phases, 69, 941–949.
  • Delmon, B. (1979). Preparation of catalysts II, in Scientific Bases for the Preparation of Heterogeneous Catalysts, edited by P. Grange P. Jacobs and G. Poncelet Elsevier, Amsterdam, The Netherlands, pp. 51–59.
  • Deraz, N. M., Selim, M. M., and Ramadan, M. (2009). Processing and properties of nanocrystalline Ni and NiO catalysts, Mater. Chem. Phys., 113, 269–275.
  • Falconer, J. L., and Schwarz, J. A. (1983). Temperature-programmed desorption and reaction: Applications to supported catalysts, Catal. Rev.: Sci. Eng., 25, 141–227.
  • Fierro, J. L. G., and Peña, M. A. (2005). Supported metals in the production of hydrogen, in Supported Metals in Catalysis, 1st ed., edited by J. A. Anderson M. Fernández García Imperial College Press, World Scientific Publishing Co. Pte. Ltd., London, UK, pp. 229–255.
  • Geus, J. W. (1988). Energetics of hydrogen adsorption on porous and supported metals, in Hydrogen Effects in Catalysis: Fundamentals and Practical Applications, 1st ed., edited by Z. Paál and P. G. Menon Marcel Dekker, Inc., New York, NY, pp. 85–117.
  • Gil, A., Díaz, A., Gandía, L. M., and Montes, M. (1994). Influence of the preparation method and the nature of the support on the stability of nickel catalysts, Appl. Catal. A: Gener., 109, 167–179.
  • González-Marcos, M. P., Gutiérrez-Ortiz, J., González-Ortiz de Elguea, C., Delgado, J., González-Velasco, J. R. (1997). Nickel on silica systems. Surface features and their relationship with support, preparation procedure and nickel content, Appl. Catal. A: Gener., 162, 269–280.
  • Grange, P., Charcosset, H., and Trambouze, Y. (1969). Etude de l'incorporation de l'oxyde de cuivre dans le reseau de l'oxyde de nickel par traitement thermique, J. Therm. Anal. Calorim., 1, 311–317.
  • Gronchi, P., Kaddouri, A., Centola, P., and Del Rosso, R. (2003). Synthesis of nickel supported catalysts for hydrogen production by sol-gel method, J. Sol-Gel Sci. Technol., 26, 843–846.
  • Hoang-Van, C., Kachaya, Y., Teichner, S. J., Arnaud, Y., and Dalmon, J. A. (1989). Characterization of nickel catalysts by chemisorption techniques, X-ray diffraction and magnetic measurements. Effects of support, precursor and hydrogen pretreatment, Appl. Catal., 46, 281–296.
  • Homma, S., Ogata, S., Koga, J., and Matsumoto, S. (2005). Gas-solid reaction model for a shrinking spherical particle with unreacted shrinking core, Chem. Eng. Sci., 60, 4971–4980.
  • Hurst, N. W., Gentry, S. J., Jones, A., and McNicol, B. D. (1982). Temperature-programmed reduction, Catal. Rev.: Sci. Eng., 24, 233–309.
  • Jackson, S. D., Willis, J., Kelly, G. J., McLellan, G. D., Webb, G., Mather, S., Moyes, R. B., Simpson, S., Wells, P. B., and Whyman, R. (1999). Supported nickel catalysts: Preparation and characterization of alumina-, molybdena-, and silica-supported nickel, and the identification of reactive oxygen on these catalysts by exchange with isotopically lebelled carbon dioxide. Phys. Chem. Chem. Phys., 1, 2573–2580.
  • Janković, B., Adnađević, B., and Mentus, S. (2008). The kinetic study of temperature-programmed reduction of nickel oxide in hydrogen atmosphere. Chem. Eng. Sci., 63, 567–575.
  • Johnson, W. A., and Mehl, R. F. (1939). Reaction kinetics in processes of nucleation and growth, Trans. AIME Pap., 135, 416–458.
  • Jovanović, D., Radović, R., Mareš, Lj., Stanković, M., and Marković, B. (1998). Nickel hydrogenation catalyst for tallow hydrogenation and for the selective hydrogenation of sunflower seed oil and soybean oil, Catal. Today, 43, 21–28.
  • Kapteijn, F., Moulijn, J. A., and Tarfaoui, A. (1999). Catalyst characterization and mimicking pre-treatment procedures by temperature-programmed techniques, in Catalysis: An Integrated Approach, edited by R. A. van Santen Vol. 123 of Stud. Surf. Sci. Catal., Elsevier, Amsterdam, pp. 525–541.
  • Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis, Anal. Chem., 29, 1702–1706.
  • Koga, N., and Šesták, J. (1991). Further aspects of the kinetic compensation effect, J. Therm. Anal. Calorim., 37, 1103–1108.
  • Koga, N., Šesták, J., and Šimon, P. (2013). Some fundamental and historical aspects of phenomenological kinetics in the solid state studied by thermal analysis, in Thermal Analysis of Micro, Nano- and Non-Crystalline Materials, 1st ed., edited by J. Šesták P. Šimon Springer Dordrecht, Heidelberg, New York, NY; London, UK, pp. 1–29.
  • Koga, N., and Málek, J. (1996). Accommodation of the actual solid-state process in the kinetic model function. Part 2. Applicability of the empirical kinetic model function to diffusion-controlled reactions, Thermochim. Acta, 282–283, 69–80.
  • Lemaitre, J. L. (1984). Temperature-programmed methods, in Characterization of Heterogeneous Catalysts, edited by F. Delannay Marcel Dekker, Inc., New York, NY, pp. 29–70.
  • Lesnikovich, A. I., and Levchik, S. V. (1983). A method of finding invariant values of kinetic parameters, J. Therm. Anal. Calorimet., 27, 89–93.
  • Lesnikovich, A. I., and Levchik, S. V. (1985). Isoparametric kinetic relations for chemical transformations in condensed substances (Analytical survey). II. Reactions involving the participation of solid substances, J. Therm. Anal. Calorim., 30, 677–702.
  • Liu, Y., Chen, J., and Zhang, J. (2007). Effects on the supports on activity of supported nickel catalysts for hydrogenation of m-dinitrobenzene to m-phenylenediamine, Chin. J. Chem. Eng., 15, 63–67.
  • L'vov, B. V., and Galwey, A. K. (2012). The mechanism and kinetics of NiO reduction by hydrogen. Thermochemical approach, J. Therm. Anal. Calorim., 110, 601–610.
  • Málek, J., Criado, J. M., Šesták, J., and Militký, J. (1989). The boundary conditions for kinetic models, Thermochim. Acta, 153, 429–432.
  • Málek, J. (1989). The glass transition and crystallization of germanium-sulphur glasses, J. Non-Crystall. Solids, 107, 323–327.
  • Málek, J. (1992). The kinetic analysis of non-isothermal data, Thermochim. Acta, 200, 257–269.
  • Martin, G., Mirodatos, C., and Praliaud, H. (1981). Chemistry of silica-supported catalysts: preparation, activation and reduction, Appl. Catal., 1, 367–382.
  • Matsumura, Y., Tanaka, K., Tode, N., Yazawa, T., and Haruta, M. (2000). Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica, J. Mol. Catal. A: Chem., 152, 157–165.
  • Misono, M. (2013). Studies in Surface Science and Catalysis. Heterogeneous Catalysis of Mixed Oxides – Perovskite and Heteropoly Catalysts, Vol. 176, edited by M. Misono Elsevier, Amsterdam, The Netherlands, pp. 1–181.
  • Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D. (1978). Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain Perkin-Elmer Corp., MN, USA, pp. 75–95.
  • Munteanu, G., Ilieva, L., Nedyalkova, R., and Andreeva, D. (2004). Influence of gold on the reduction behavior of Au-V2O5/CeO2 catalytic systems: TPR and kinetic parameters, Appl. Catal. A: Gener., 227, 31–40.
  • Munteanu, G., and Segal, E. (2010). Sestak-Berggren function in temperature-programmed reduction, J. Therm. Anal. Calorimet., 101, 89–95.
  • Nakagawa, Y., Nakazawa, H., Watanabe, H., and Tomishige, K. (2012). Total hydrogenation of furfural over a silica-supported nickel catalyst prepared by the reduction of a nickel nitrate precursor, ChemCatChem – Catal., 4, 1791–1797.
  • Nele, M., Vidal, A., Bhering, D. L., Pinto, J. C., and Salim, V. M. M. (1999). Preparation of high loading silica-supported nickel catalyst: simulataneous analysis of the precipitation and aging steps, Appl. Catal. A: Gener., 178, 177–189.
  • Robertson, S. D., McNicol, B. D., De Baas, J. H., Kloet, S. C., and Jenkins, J. W. (1975). Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction, J. Catal., 37, 424–431.
  • Rooksby, H. P. (1943). Structure of NiO, Nature (London), 152, 304–305.
  • Scott, D. M., Lau, S. S., Pfeffer, R. L., Lux, R. A., Mikkelson, J., Wieluński, L., and Nicolet, M.-A. (1983). The effects of interfacial SiO2 on Pd2Si formation, Thin Solid Films, 104, 227–233.
  • Senum, G. I., and Yang, R. T. (1979). Rational approximation of the integral of the Arrhenius function, J. Therm. Anal. Calorim., 11, 445–447.
  • Stanković, M., Gabrovska, M., Krstić, J., Tzvetkov, P., Shopska, M., Tsacheva, T., Banković, P., Edreva-Kardjieva, R., and Jovanović, D. (2009). Effect of silver modification on structure and catalytic performance of Ni-Mg/diatomite catalysts for edible oil hydrogenation, J. Mol. Catal. A: Chem., 297, 54–62.
  • Stevenson, S. A., Dumesic, J. A., Baker, R. T. K., and Ruckenstein, E. (1989). Metal-Support Interactions in Catalysis, Sintering, and Redispersion, Van Nostrand, New York, NY, pp. 59–64.
  • Szekely, J., Lin, C. I., and Sohn, H. Y. (1973). A structural model for gas-solid reactions with a moving boundary-V an experimental study of the reduction of porous nickel-oxide pellets with hydrogen, Chem. Eng. Sci., 28, 1975–1989.
  • Szekely, J., and Evans, J. W. (1971). Studies in gas-solid reactions: Part I. A structural model for the reaction of porous oxides with a reducing gas, Metall. Mater. Trans. B, 2, 1691–1698.
  • Šesták, J., and Berggren, G. (1971). Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures, Thermochim. Acta, 3, 1–12.
  • Šesták, J., Šatava, V., and Wendlandt, W. W. (1973). The study of heterogeneous processes by thermal analysis, Thermochim. Acta, 7, 333–336.
  • Thomas, J. M., and Thomas, W. J. (1997). Principles and Practice of Heterogeneous Catalysis, WHC Verlag GmbH, Weinheim, pp. 32–43.
  • Tien, R. H., and Turkdogan, E. T. (1972). Gaseous reduction of iron oxides: Part IV. Mathematical analysis of partial internal reduction – diffusion control, Metall. Mater. Trans. B, 3, 2039–2048.
  • Ueckert, T., Lamber, R., Jaeger, N. I., and Schubert, U. (1997). Strong metal support interactions in a Ni/SiO2 catalyst prepared via sol-gel synthesis, Appl. Catal. A: Gener., 155, 75–85.
  • Vlaev, L., Georgieva, V., and Genieva, S. (2007). Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds, J. Therm. Anal. Calorim., 88, 805–812.
  • Vyazovkin, S., and Wight, C. A. (1997). Kinetics In Solids, Ann. Rev. Phys. Chem., 48, 125–149.
  • Vyazovkin, S. (2000). Kinetic concepts of thermally stimulated reactions in solids: A view from historical perspective, Int. Rev. Phys. Chem., 19, 45–60.
  • Vyazovkin, S., and Wight, C. A. (1999). Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochim. Acta, 340–341, 53–68.
  • Wang, H., Jiao, X., and Chen, D. (2008). Monodispersed nickel nanoparticles with tunable phase and size: Synthesis, characterization, and magnetic properties, J. Phys. Chem. C, 112, 18793–18797.
  • Weatherbee, G. D., and Bartholomew, C. H. (1984). Effects of support on hydrogen adsorption/desorption kinetics of nickel, J. Catal., 87, 55–65.
  • Yamashina, Y., and Nagamatsuya, T. (1966). Hydrogen reduction of nickel oxide doped and mixed with cupric oxide, J. Phys. Chem., 70, 3572–3575.
  • Zhou, L., Rai, A., Piekiel, N., Ma, X., and Zachariah, M. R. (2008). Ion-mobility spectrometry of nickel nanoparticle oxidation kinetics: Application to energetic materials, J. Phys. Chem. C, 112, 16209–16218.
  • Zieliński, J. (1995). Reductibility of silica supported nickel oxide. Catal. Lett., 31, 47–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.