381
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, Characterization and Application of Co–MgO Mixed Oxides in Oxidation of Carbon Monoxide

, , , &

References

  • Ab Rahman, N. A., Olutoye, M. A., and Hameed, B. H. (2011). Synthesis of methyl esters from palm (Elaeisguineensis) oil using cobalt doped MgO as solid oxide catalyst, Bioresource Technol., 102, 9749–9754.
  • Abian, M., Gimenez-Lopez, J., Bilbao, R., and Alzueta, M. U. (2011). Effect of different concentration levels of CO2 and H2O on the oxidation of CO: experiments and modeling, P. Combust. Inst., 33, 317–323.
  • Aniz, C. U., and Radhakrishnan Nair, T. D. (2011). A study on catalysis by ferrospinels for preventing atmospheric pollution from carbon monoxide, Open J. Phys. Chem., 1, 124–130.
  • Balikçi, F., Buket Yüceer, S., and Güldür, Ç. (2008). Comparative study of Ag2O/CO3O4 catalysts prepared by the sol-gel and co-precipitation techniques: characterization and CO activity studies, Chem. Eng. Comm., 196, 171–181.
  • Biabani-Ravandi, A., and Rezaei, M. (2012). Low temperature CO oxidation over Fe–Co mixed oxide nanocatalysts, Chem. Eng. J., 184, 141–146.
  • Biabani, A., Rezaei, M., and Fattah, Z. (2012). Optimization of preparation conditions of Fe-Co nanoparticles in low-temperature CO oxidation reaction by taguchi design method, J. Nat. Gas Chem., 21, 415–420.
  • Biabani-Ravandi, A., Rezaei, M., and Fattah, Z. (2013a). Catalytic performance of Ag/Fe2O3 for the low temperature oxidation of carbon monoxide, Chem. Eng. J., 219, 124–130.
  • Biabani-Ravandi, A., Rezaei, M., and Fattah, Z. (2013b). Study of Fe-Co mixed metal oxide nanoparticles in the catalytic low-temperature CO oxidation, Process Saf. Environ., 91, 489–494.
  • Biabani-Ravandi, A., Rezaei, M., and Fattah, Z. (2013c). Low-temperature CO oxidation over nanosized Fe–Co mixed oxide catalysts: effect of calcination temperature and operational conditions, Chem. Eng. Sci., 94, 237–244.
  • Busca, G., Finocchio, E., and Escribano, V. S. (2012). Infrared studies of CO oxidation by oxygen and by water over Pt/Al2O3 and Pd/Al2O3 catalysts, Appl. Catal. B, 113–114, 172–179.
  • Byong, C. (1986). Estimation of kinetic parameters for elementary surface processes from integral reactor data. CO oxidation over Pt/Al2O3, Chem. Eng. Comm., 47, 201–217.
  • Cao, C., Dou, Z., Liu, H., and Song, W. (2012). Low cost synthesis of 3D flowerlike Co3O4 nanostructures as active catalyst for CO oxidation, Chin. J. Catal., 33, 1334–1339.
  • Carabineiro, S. A. C., Bogdanchikova, N., Pestryakov, A., Tavares, P. B., Fernandes, L. S. G., and Figueiredo, J. L. (2011). Gold nanoparticles supported on magnesium oxide for CO oxidation, Nanoscale Res. Lett., 6, 435–440.
  • Chiu, K., Kwong, F., and Ng, D. H. L. (2012). Enhanced oxidation of CO by using a porous biomorphic CuO/CeO2/Al2O3 compound, Micropor. Mesopor. Mater., 156, 1–6.
  • El-Shobaki, G. A., Selim, M. M., and Hewaidy, I. F. (1980). The catalytic oxidation of carbon monoxide on cobalt oxide, Surf. Technol., 10, 55–63.
  • El-Shobaky, G. A., and Deraz, N. M. (2001). Surface and catalytic properties of cobaltic oxide supported on an active magnesia, Mater. Lett., 47, 231–240.
  • Fattah, Z., Rezaei, M., Biabani-Ravandi, A., and Irankhah, A. (2014). Preparation of Co–MgO mixed oxide nanocatalysts for low temperature CO oxidation: optimization of preparation conditions, Process Saf. Environ., 92, 948–956.
  • Grillo, F., Natile, M. M., and Glisenti, A. (2004). Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface, Appl. Catal. B, 48, 267–274.
  • Gubicza, J., Szepvolgyi, J., Mohai, I., Zsoldos, L., and Ungar, T. (2000). Particle size distribution and dislocation density determined by high resolution X-ray diffraction in nanocrystalline silicon nitride powders, Matter. Sci. Eng., 280, 263–269.
  • Güldür, Ç., and Balikçi, F. (2003). Catalytic oxidation of CO over Ag-Co/alumina catalysts, Chem. Eng. Commun., 190, 986–998.
  • Iglesias, A. H., Ferreira, O. P., Gouveia, D. X., Souza Filho, A. G., de Paiva, J. A. C., Mendes Filho, J., and Alves, O. L. (2005). Structural and thermal properties of Co–Cu–Fe hydrotalcite-like compounds, J. Solid State Chem., 178, 142–152.
  • Inui, T., Ono, Y., Takagi, Y., and Kim, J. B. (2000). Oxygen spillover effects induced by Rh-modification on the low-temperature oxidation of CO over Cu-incorporated zeolite a studied by the forced oscillating reaction method, Appl. Catal. A, 202, 215–222.
  • Jansson, J. (2000). Low-Temperature CO Oxidation over Co3O4/Al2O3, J. Catal., 194, 55–60.
  • Kim, M. H., and Kim, D. W. (2011). Parametric study on the deactivation of supported Co3O4 catalysts for low temperature CO oxidation, Chin. J. Catal., 32, 762–770.
  • Liang, F., Zhu, H., Qin, Z., Wang, G., and Wang, J. (2009). Effects of CO2 on the stability of Pd/CeO2–TiO2 catalyst for low-temperature CO oxidation, Catal. Commun., 10, 737–740.
  • Lin, H. K., Chiu, H. C., Tsai, H. C., Chien, S. H., and Wang, C. B. (2003). Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide, Catal. Lett., 88, 169–174.
  • Lou, Y., Wang, L., Zhang, Y., Zhao, Z., Zhang, Z., Lu, G., and Guo, Y. (2011). The effects of Bi2O3 on the CO oxidation over Co3O4, Catal. Today, 175, 610–614.
  • Marino, F., Descorme, C., and Duprez, D. (2005). Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX), Appl. Catal. B, 58, 175–183.
  • Meshkani, F., and Rezaei, M. (2011). Nickel catalyst supported on magnesium oxide with high surface area and plate-like shape: a highly stable and active catalyst in methane reforming with carbon dioxide, Catal. Commun., 12, 1046–1050.
  • Meshkani, F., Rezaei, M., and Andache, M. (2014). Investigation of the catalytic performance of Ni/MgO catalysts in partial oxidation, dry reforming and combined reforming of methane, J. Ind. Eng. Chem., 20, 1251–1260.
  • Mokhtar, M., Basahel, S. N., and Al-Angary, Y. O. (2010). Nanosized spinel oxide catalysts for CO-oxidation prepared via CoMnMgAl quaternary hydrotalcite route, J. Alloy Compd., 493, 376–384.
  • Parinyaswan, A., Pongstabodee, S., and Luengnaruemitchai, A. (2006). Catalytic performances of Pt–Pd/CeO2 catalysts for selective CO oxidation, Int. J. Hydrogen Energ., 31, 1942–1949.
  • Pérez, A., Lamonier, J. F., Giraudon, J. M., Molina, R., and Moreno, S. (2011). Catalytic activity of Co-Mg mixed oxides in the VOC oxidation: effects of ultrasonic assisted in the synthesis, Catal. Today, 176, 286–291.
  • Potemkin, D. I., Filatov, E. Y., Zadesenets, A. V., Snytnikov, P. V., Shubin, Y. V., and Sobyanin, V. A. (2012). Preferential CO oxidation over bimetallic Pt–Co catalysts prepared via double complex salt decomposition, Chem. Eng. J., 207–208, 683–689.
  • Querini, C. A., Ulla, M. A., Requejo, F., Soria, J., Sedran, U. A., and Miro, E. E. (1998). Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co, K/MgO catalysts, Appl. Catal. B, 15, 5–19.
  • Querini, C. A., Cornaglia, L. M., Ulla, M. A., and Miro, E. E. (1999). Catalytic combustion of diesel soot on Co, K/MgO catalysts: effect of the potassium loading on activity and stability, Appl. Catal. B, 20, 165–177.
  • Royer, S., and Duprez, D. (2011). Catalytic oxidation of carbon monoxide over transition metal oxides, ChemCatChem, 3, 24–65.
  • Satsuma, A., Osaki, K., Yanagihara, M., Ohyama, J., and Shimizu, K. (2013). Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts, Appl. Catal. B, 132–133, 511–518.
  • Subbotin, A. N., Gudkov, B. S., Dykh, Z. L., and Yakerson, V. L. (1999). Temperature hysteresis in CO oxidation on catalysts of various nature, React. Kinet. Catal. L., 66, 97–104.
  • Sun, S., Yang, L., Pang, G., and Feng, S. (2011). Surface properties of Mg doped LaCoO3 particles with large surface areas and their enhanced catalytic activity for CO oxidation, Appl. Catal. A, 401, 199–203.
  • Tang, C. W., Wang, C. B., and Chien, S. H. (2008). Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS, Thermochim. Acta, 473, 68–73.
  • Teng, F., Yao, W., Zhu, Y., Gao, G., and DeshengMeng, D. (2009). Micelle-assisted hydrothermal synthesis of the uniform Co3O4 nanorods and its chemoluminescence properties of CO oxidation, J. Non-Cryst. Solids, 355, 2375–2380.
  • Yan, L., Zhuang, J., Sun, X., Deng, Z., and Li, Y. (2002). Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration, Mater. Chem. Phys., 76, 119–122.
  • Yu, Y., Takei, T., Ohashi, H., He, H., Zhang, X., and Haruta, M. (2009). Pretreatments of Co3O4 at moderate temperature for CO oxidation at −80°C, J. Catal., 267, 121–128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.