103
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Multivariate Optimization and Adsorption Characterization of As(III) by Using Fraxinus Tree Leaves

, , &

References

  • Abdelwahab, O., Amin, N. K., and El-Ashtoukhy, E.-S. Z. (2013). Removal of zinc ions from aqueous solution using a cation exchange resin, Chem. Eng. Res. Des., 91, 165–173.
  • Arief, V. O., Trilestari, K., Sunarso, J., Indraswati, N., and Ismadji, S. (2008). Review; recent progress on biosorption of heavy metals from liquids using low cost biosorbents: Characterization, biosorption parameters and mechanism studies, CLEAN—Soil Air Water, 36(12), 937–962.
  • Bhatti, H. N., and Hamid, S. (2013). Removal of uranium(VI) from aqueous solutions using Eucalyptus citriodora distillation sludge, Int. J. Environ. Sci. Technol., 11(3), 813–822.
  • Bhatti, H. N., Saleem, A., and Hanif, M. A. (2013). Utilization of Mentha arvensis waste biomass for the removal of Pb(II) and Co(II) from aqueous solutions, Desalin. Water Treat., 51, 3335–3343.
  • Basha, S., Murthy, Z. V. P., and Jha, B. (2008). Sorption of Hg(II) onto Carica papaya: Experimental studies and design of batch sorber, Chem. Eng. J., 99, 794–800.
  • Baskan, M. B., and Pala, A. (2010). A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate, Desalination, 254, 42–48.
  • Bezerra, M. A., Santelli, R. E. E., Oliveira, P., Villar, L. S., and Esclaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry review, Talanta, 76, 965–977.
  • Boddu, V. M., Abburi, K., Talbott, J. L., Smith, E. D., and Haasch, R. (2008). Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent, Water Res., 42, 633–642.
  • Bruns, R. E., Scarmino, I. S., and de Barros Neto, B. (2006). Statistical Design—Chemometrics, 1st ed., Elsevier, Amsterdam.
  • Cheung, C. W., Porte, J. F., and McKay, G. (2001). Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char, Water Res., 35, 605–612.
  • Choong, T. S. Y., Chuaha, T. G., Robiah, Y., Gregory Koay, F. L., and Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: An overview, Desalination, 217, 139–166.
  • Dabrowski, A. (2001). Adsorption from theory to practice, Adv. Colloids Interface Sci., 93, 135–224.
  • Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y.-H., Indraswati, N., and Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies—Review, J. Hazard. Mater., 162, 616–645.
  • Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., da Silva, E. G. P., Portugal, L. A., Reis, P. S. D., Souza, A. S., and Santos, W. N. L. D. (2007). Box–Behnken design: An alternative for optimization of analytical methods, Anal. Chim. Acta, 597, 179–186.
  • Hansen, H. K., Ribeiro, A., and Mateus, E. (2006). Biosorption of arsenic (V) with Lessonia nigrescens, Miner. Eng., 19, 486–490.
  • Hassan, S. H., Ranjan, D., and Talat, M. (2009). Rice polish for the removal from aqueous solution: Optimization of process variables, Ind. Eng. Chem. Res., 48, 4194–4201.
  • Ho, Y. S. (2006). Review of second-order models for adsorption systems, J. Hazard. Mater., B136, 681–689.
  • Ho, Y. S., and McKay, G. (1998). The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, 822–827.
  • Ho, Y. S., and McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34, 735–742.
  • Kundu, S., and Gupta, A. K. (2006). Investigations on the adsorption efficiency of iron oxide coated cement (IOCC) towards As(V)-kinetics, equilibrium and thermodynamic studies, Colloids Surf. A, 273, 121–128.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361–1403.
  • Liu, Y., and Liu, Y.-J. (2008). Biosorption isotherms, kinetics and thermodynamics—Review, Sep. Purif. Technol., 61, 229–242.
  • Malik, R., Hasany, S. M., and Subhani, M. S. (2005). Sorptive potential of sun flower stem for Cr(III) ions from aqueous solutions and its kinetic and thermodynamic profile, Talanta, 66, 66–173.
  • Manahan, S. E. (2001). Fundamentals of Environmental Chemistry, 2nd ed., Lewis, New York.
  • Massart, D. L., Vandeginste, B. G. M., Buydens, L. M. C., De Jong, S., Lewi, P. J., and Smeyers-Verbeke, J. (1997). Handbook of Chemometrics and Qualimetrics, Part A, Elsevier, Amsterdam.
  • Mohan, D., Pittman, Jr., C. U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P. H., Alexandre-Franco, M. F., Gomez-Serrano, V., and Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production, J. Colloid Interface Sci., 310, 57–73.
  • Montgomery, D. C. (2001). Design and Analysis of Experiments, 5th ed., Wiley, New York.
  • Niu, C. H., Volesky, B., and Cleiman, D. (2007). Biosorption of arsenic (V) with acid-washed crab shells, Water Res., 41(11), 2473–2478.
  • Ofomaja, A. E. (2010). Intraparticle diffusion process for lead (II) biosorption onto mansonia wood sawdust, Bioresour. Technol., 101, 5868–5876.
  • Radojevic, M., and Bashkin, V. N. (2006). Practical Environmental Analysis, 2nd ed., RSC, Cambridge.
  • Ranjan, D., Talat, M., and Hassan, S. H. (2009). Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’, J. Hazard. Mater., 166, 1050–1059.
  • Richenberg, D. (1953). Properties of ion-exchange resins in relation to their structure, III. Kinetic of exchange, J. Am. Chem. Soc., 75, 589–597.
  • Rodley, G. A., Goodgame, D. M. I., and Cotton, F. A. (1965). Infrared spectra (1000–200 cm−1) of some transition metal complexes with tertiary arsine oxide, J. Chem. Soc., 1965: 1499.
  • Ryan, T. P. (2007). Modern Experimental Design, Wiley, Hoboken, NJ.
  • Sangi, M., Shahmoradi, A., Zolgharnein, J., Azimi, G. H., and Ghorbandoost, M. (2008). Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves, J. Hazard. Mater., 155, 513–522.
  • Sari, A., and Tuzen, M. (2008). Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 160, 349–355.
  • Smedley, P. L., and Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters, Appl. Geochem., 17, 517–568.
  • Strkalj, A., and Mlina, J. (2011). Thermodynamic and kinetic study of adsorption of Ni(II) ions on carbon anode dust, Chem. Eng. Commun., 198, 1497–1504.
  • Sud, D., Mahajan, D., and Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review, Bioresour. Technol., 99, 6017–6027.
  • Tanboonchuy, V., Grisdanurak, N., and Liao, C.-H. (2012). Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design, J. Hazard. Mater., 205–206, 40–46.
  • Tripathy, S. S., and Kanungo, S. B. (2005). Adsorption of Co2+, Ni2+, Cu2+ and Zn2+from 0.5 M NaCl and major ion sea water on a mixture of δ-MnO2 and amorphous FeOOH, J. Colloid Interface Sci., 284, 30–38.
  • Volesky, B. (2003). Sorption and Biosorption, BV Sorbex Inc., Quebec, Canada.
  • Volesky, B. (2007). Biosorption and me, Water Res., 41, 4017–4029.
  • Volesky, B., and Holant, Z. R. (1995). Biosorption of heavy metals-review, Biotechnol. Progr., 11, 235–250.
  • Wan Ngah, W. S., and Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review, Bioresour. Technol., 99, 3935–3948.
  • Wang, S., and Mulligan, C. N. (2006). Occurrence of arsenic contamination in Canada: Sources, behavior and distribution, Sci. Total Environ., 366, 701–721.
  • Waugh, J. L. T. (1982). Encyclopedia of Science and Technology, McGraw-Hill, New York.
  • Wu, F.-C., Tseng, R.-L., and Juang, R.-S. (2001). Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan, Water Res., 35, 613–618.
  • Zolgharnein, J., Adhami, Zh., Shahmoradi, A., and Mousavi, S. N. (2010a). Optimization of removal of methylene blue by Platanus tree leaves using response surface methodology, Anal. Sci., 26, 111–116.
  • Zolgharnein, J., Adhami, Zh., Shahmoradi, A., Mousavi, S. N., and Sangi, M. R. (2010b). Multivariate optimization of Cd(II) biosorption onto Ulmus tree leaves from aqueous wastes, Toxicol. Environ. Chem., 92(8), 1461–1470.
  • Zolgharnein, J., Asanjarani, N., and Mousavi, S. N. (2011). Optimization and characterization of Tl(I) adsorption onto modified Ulmus carpinifolia tree leaves, CLEAN—Soil Air Water, 39(3), 250–258.
  • Zolgharnein, J., Asanjarani, N., and Shariatmanesh, T. (2013a). Taguchi L16 orthogonal array optimization for Cd(II) removal using Carpinus betulus tree leaves: Adsorption characterization, Int. Biodeterior. Biodegrad., 85, 66–77.
  • Zolgharnein, J., and Shahmoradi, A. (2010a). Adsorption of Cr(VI) onto Elaeagnus tree leaves; statistical optimization, equilibrium modeling and kinetic studies, J. Chem. Eng. Data, 55, 3428–3437.
  • Zolgharnein, J., and Shahmoradi, A. (2010b). Characterization of sorption isotherms, kinetic models, and multivariate approach for optimization of Hg(II) adsorption onto Fraxinus tree leaves, J. Chem. Eng. Data, 55, 5040–5049.
  • Zolgharnein, J., Shahmoradi, A., and Ghasemi, J. B. (2013b). Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb(II) adsorption onto Robinia tree leaves, J. Chemom., 27, 2–20.
  • Zolgharnein, J., Shahmoradi, A., and Sangi, M. R. (2008). Optimization of Pb(II) biosorption by Robinia tree leaves using statistical design of experiments, Talanta, 76, 528–532.
  • Zolgharnein, J., Shariatmanesh, T., and Asanjarani, N. (2013c). Cersis siliquastrum tree leaves as efficient adsorbent for removal of Ag (I): Response surface optimization and characterization of biosorption, CLEAN—Soil Air Water, 41(12), 1183–1195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.