172
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A Turbulence-Altering Pseudo-Surface for Enhancing the Flow in Pipes

, &

References

  • Abdulbari, H. A., Shabirin, A., Abdurrahman, H. N. (2014). Bio-polymers for improving liquid flow in pipelines—A review and future work opportunities, J. Ind. Eng. Chem., 20(4), 1157–1170.
  • Abdulbari, H. A., Yunus, R. M., Abdurahman, N. H., Charles, A. (2013). Going against the flow—A review of non-additive means of drag reduction, Ind. Eng. Chem., 19(1), 27–36.
  • Akiomi, U., Hasegawa, T., Nakajima, T., Uchiyama, H., Narumi, T. (2012). Drag reduction effect of nanobubble mixture flows through micro-orifices and capillaries, Exp. Therm Fluid Sci., 39, 54–59.
  • Al-Wahaibi, T., Al-Wahaibi, Y., Al-Ajmi, A., Yusuf, N., Al-Hashmi, A. R., Olawale, A. S., and Mohammed, I. A. (2013). Experimental investigation on the performance of drag reducing polymers through two pipe diameters in horizontal oil–water flows, Exp. Therm. Fluid Sci., 50, 139–146.
  • Anselmo, S. P., Edson, J. S. (2012). Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device, J. Non-Newtonian Fluid Mech., 179–180, 9–22.
  • Bandyopadhyay, P. R. (1987). Rough-wall turbulent boundary layers in the transition regime, J. Fluid Mechanics, 180, 231–26.
  • Bane, N. J., and Jayakumar, P. (2005). Compliant materials for drag reduction of high-speed submerged bodies, Defence Sci. J., 55(1), 37–42.
  • Baron, A., and Quadrio, M. (1996). Drag reduction by spanwise wall oscillations, App. Sci. Res., 55, 311–326.
  • Baron, A., Quadrio, M., and Vigevano, L. (1994). On the boundary layer/riblets interaction mechanisms and the prediction of turbulent drag reduction, Int. J. Heat and Fluid Flow, 14(4), 324–332.
  • Bartol, I. K., Krueger, P. S., Stewart, W. J., and Thompson, J. T. (2009). Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers, J. Exp. Biol., 212, 1506–1518.
  • Bartol, I. K., Krueger, P. S., Stewart, W. J., and Thompson, J. T. (2010). Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: Evidence of multiple jet “modes” and their implications for propulsive efficiency, J. Exp. Biol., 212, 1889–1903.
  • Bechert, D. W., and Hage, W. (2006). Flow Phenomena in Nature, WIT Press, UK, vol. 2, pp. 457–458.
  • Brian, D., and Bhushan, B. (2012). The effect of riblets in rectangular duct flow, Appl. Surf. Sci., 258(8), 3936–3947.
  • Brostow, W. (2008). Drag reduction in flow: Review of applications, mechanism and prediction, Ind. Eng. Chem., 14, 409–416.
  • Bruse, M., Bechert, D. W., Van Der Hoeven, J. G. Th., Hage, W., and Hoppe, G. (1993). In Near-Wall Turbulent Flows, R. M. C. So C. G. Speziale B. E. Launder (eds.) Proceedings of the International Conference on Near-Wall Turbulent Flows, March 15–17, 1993, Arizona, USA.
  • Burger, E. D., and Chorn, L. G. (1980). Studies of drag reduction conducted over a broad range of pipeline conditions when flowing Prudhoe Bay crude oil, J. Rheol., 24, 603–611.
  • Cai, S. P. (2010). Influence of young's modulus on drag-reduction in turbulent flow using flexible tubes, J. Hydrology, 22(5), 657–661.
  • Cai, S. P., Jin, G.-Y., and Li, D.-M. (2008). drag reduction effect of coupling flexible tubes with turbulent flow, J. Hydrology, 20(1), 96–100.
  • Choi, K. S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N., and Kulik, V. M. (1997). Turbulent drag reduction using compliant surfaces, Proc. R. Soc. A, 453(1965), 2229–2240.
  • Choi, K. S. (1989). Near-wall structures of a turbulent boundary layer with riblets, J. Fluid Mechanics, 208, 417–458.
  • Danyang, Z., Tian, Q., Wang, M., and Jin, Y. (2014). Study on the hydrophobic property of shark-skin-inspired micro-riblets, J. Bionic Eng., 11(2), 296–302.
  • Djenidi, L., Anselmet, J., Liandrat, J., and Fulachier, L. (1994). Laminar boundary layer over riblets, Phys. Fluids, 6(9), 2993–2999.
  • Dujmovich, T., and Gallegos, A. (2005). Drag reducers improve throughput, cut costs, Offshore, 65(12), 1–4.
  • Du, Y., Symeonidis, V., and Karniadakis, G. E. (2002). Reduction in wall-bounded wave, J. Fluid Mechanics, 457, 1–34.
  • El-Samni, O. A., Chun, H. H., and Yoon, H. S. (2007). Drag reduction of turbulent flow over thin rectangular riblets, Int. J. Eng. Sci., 45, 436–454.
  • Fabula, A. G. (1971). Fire-fighting benefits of polymeric friction reduction, Trans. ASME J. Basic Eng., 3, 93–453.
  • Golda, J. (1986). Hydraulic transport of coal in pipes with drag reducing additives, Chem. Eng. Commun., 45, 53–67.
  • Greene, H. L., Mostardi, R. F., and Nokes, R. F. (1980). Effects of drag reducing polymers on initiation of atherosclerosis, Polym. Eng. Sci., 20(7), 449–504.
  • Guzman, M. R., Saeki, T., Usui, H., and Nishimura, T. (1999). Surfactant drag reduction in internally-grooved rough tubes, J. Chem. Eng. Japan, 32(4), 402–408.
  • Gyr, A., and Bewersdorff, H. W. (1995). Drag Reduction of Turbulent Flows by Additives, Kluwer Academy, Dordrecht, Netherlands.
  • Gyr, A., and Buhler, J. (2010). Secondary flows in turbulent surfactant solutions at maximum drag reduction, J. Non-Newtonian Fluid Mech., 165, 672–675.
  • Hamid, S., Moosavi, R., Gholami, E., and Nouri, N. M. (2013). The effect of bubble on pressure drop reduction in helical coil, Exp. Therm Fluid Sci., 51, 251–256.
  • Holland, F. A., and Bragg, R. (1995). Fluid Flow for Chemical Engineers, 2nd ed., Edward Arnold, London, UK.
  • Jung, W. J., Mangiavacchi, N., and Akhavan, R. (1992). Suppression of turbulence in wall bounded flows by high-frequency spanwise oscillations, Phys. Fluids, 8, 1605–1607.
  • Jung, C., Xu, C., and Sung, H. J. (2002). Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows, AIAA J., 40(5), 842–850.
  • Kramer, M. O. (1960). Boundary-layer stabilization by distributed damping, Am. Soc. Naval Eng., 72, 25–33.
  • Kwing-So, C., and Clayton, B. R. (2001). The mechanism of turbulent drag reduction with wall oscillation, Int. J. Heat Fluid Flow, 22(1), 1–9.
  • Leonardo, P. C., Arndt, R. E. A., and Sotiropoulos, F. (2013). Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application, Renewable Energy, 50, 1095–1105.
  • McCormick, M. E., and Bhattacharyya, R. (1973). Drag reduction of a submersible hull by electrolysis, Naval Eng. J., 85, 11–16.
  • McHenry, M. J., Michel, K. B., Stewart, W. J., and Müller, U. K. (2010). Hydrodynamic sensing does not facilitate active drag reduction in the golden shiner (Notemigonus crysoleucas), J. Exp. Biol., 213, 1309–1319.
  • Mohamed, G. (2003). Drag reduction using compliant walls, Fluid Mech. Appl., 72, 191–229.
  • Mohanarangama, K., Cheung, S. C. P., Tu, J. Y., and Chen, L. (2009). Numerical simulation of micro-bubble drag reduction using population balance model, Ocean Eng., 36(11), 863–872.
  • Motier, J. F., and Carreir, A. M. (1989). Recent studies on polymer drag reduction in commercial pipelines, in: Sellin, R. and Moses, R. (eds.), Drag Reduction in Fluid Flows: Techniques for Friction Control, Ellis Horwood, West Sussex, UK, 197–204.
  • Motier, J. F., Chou, L. C., and Kommareddi, N. S. 1996. Commercial drag reduction: Past, present, and future. In Proceedings of the ASME Fluids Engineering Division Summer Meeting, ASME, San Diego, CA, USA.
  • Nikitin, N. V. (2000). On the mechanism of turbulence suppression by spanwise surface, Fluid Dyn., 35(2), 185–190.
  • Nouri, N. M., Motlagh, S. Y., Navidbakhsh, M., Dalilhaghi, M., and Moltani, A. A. (2013). Bubble effect on pressure drop reduction in upward pipe flow, Exp. Therm Fluid Sci., 44, 592–598.
  • Pang, M. J., Wei, J. J., and Yu, B. (2014). Numerical study on modulation of microbubbles on turbulence frictional drag in a horizontal channel, Ocean Eng., 81, 58–68.
  • Park, S. R., Wallace, J. M. (1993). Near-wall turbulent flows, in: So, R. M. C. Speziale, C. G. and Launder, B. E. (eds.), Experiments with Conventional and with Novel Adjustable Drag-Reducing Surfaces, Elsevier, Amsterdam, The Netherlands, 719–738.
  • Pierre, R., Ottonelli, C., Hasegawa, Y., and Quadrio, M. (2012). Changes in turbulent dissipation in a channel flow with oscillating walls, J. Fluid Mech., 700, 77–104.
  • Pouranfard, A. R., Mowla, D., and Esmaeilzadeh, F. (2014). An experimental study of drag reduction by nanofluids through horizontal pipe turbulent flow of a Newtonian liquid, J. Ind. Eng. Chem., 20(2), 633–637.
  • Saeki, T., Ohtake, N., and Imai, K. (2007). Heat transfer reduction by drag-reducing surfactant solutions in a higher temperature range, J. Chem. Eng. Japan, 40(11), 957–963.
  • Stewart, W. J., Bartol, I. K., and Krueger, P. S. (2010). Hydrodynamic fin function of brief squid, Lolliguncula brevis, J. Exp. Biol., 213, 2009–2024.
  • Stille, S., Beck, T., and Singheiser, L. (2014). Influence of riblets, geometry on fatigue life of surface structured AA 2024 thin sheets, Int. J. Fatigue, 68, 48–55.
  • Suzuki, H., Konaka, T., and Komoda, Y. (2010). Particle size depression and drag reduction of ice slurry treated with combination additives of surfactants and poly(vinyl alcohol), J. Chem. Eng. Japan, 43(6), 482–486.
  • Suzuki, H., Konaka, T., Komoda, Y., Ishigami, T., and Fudaba, T. (2012). Flow and heat transfer characteristics of ammonium alum hydrate slurry treated with surfactants, J. Chem. Eng. Japan, 45(2), 136–141.
  • Takahashi, T., Kakugawa, A., Kawashima, H., and Kodama, Y. (1999). Experimental skin friction reduction by microbubbles using a ship with a flat bottom, 31st Symposium on Turbulence Flow, 1999, Tokyo, Japan.
  • Takahashi, T., Kakugawa, A., Makino, M., Yanagihara, T., and Kodama, Y. (2000). A brief report on microbubble experiments using 50 m-long flat plate ship, 74th General Meeting of SRI, 2000, Japan.
  • Toms, B. (1948). Observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers, Proc. Int'l Rheological Congress, 2, 135–141.
  • Usui, H., Kamada, T., and Suzuki, H. (2004). Surfactant drag reduction caused by a cationic surfactant with excess addition of counter-ions, J. Chem. Eng. Japan, 37(10), 1232–1237.
  • Virk, P. S. (1975). Drag reduction fundamentals, AICHE J., 21(4), 625–831.
  • Wallace, J. M., and Balint, J.-L. (1987). In Turbulence Management and Relaminarisation, Liepmann, H. W. and Narasimha, R. (eds.), pp. 97–103, Springer-Verlag, Berlin.
  • White, C. M., and Mungal, M. G. (2008). Mechanics and prediction of turbulent drag reduction with polymer additives, Ann. Rev. Fluid Mechanics, 40, 235–256.
  • Winkel, E. S., Oweis, G. F., Vanapalli, S. A., Dowling, D. R., Solomon, M. J., and Ceccio, S. L. (2009). High Reynolds-number turbulent boundary layer friction drag reduction from wall-injected polymer solutions, J. Fluid Mech., 621, 259–288.
  • Yang, S.-Q., and Dou, G. (2010). Turbulent drag reduction with polymer additive in rough pipes, J. Fluid Mech., 642, 279–294.
  • Yi, W., Yu, B., Zakin, J. L., and Shi, H. (2011). Review on drag reduction and its heat transfer by additives, Adv. Mech. Eng., 478749, 1–17.
  • Yusuf, N., Al-Wahaibi, T., Al-Wahaibi, Y., Al-Ajmi, A., Al-Hashmi, A. R., Olawale, A. S., and Mohammed, I. A. (2012). Experimental study on the effect of drag reducing polymer on flow patterns and drag reduction in a horizontal oil–water flow, Int. J. Heat Fluid Flow, 37, 74–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.