321
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Biodegradation of Phenol from Wastewater by Microorganism Immobilized in Bentonite and Carboxymethyl Cellulose Gel

, , &

References

  • Ali, O., Namane, A., and Hellal, A. (2013). Use and recycling of Ca-alginate biocatalyst for removal of phenol from wastewater, J. Ind. Eng. Chem., 19, 1384–1390.
  • Abdulla, R., and Ravindra, P. (2013). Characterization of cross linked Burkholderia cepacia lipase in alginate and κ-carrageenan hybrid matrix, J. Taiwan Inst. Chem. E., 44, 545–551.
  • Arutchelvan, V., Kanakasabai, V., Nagarajan, S., and Muralikrishnan, V. (2003). Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater, J. Hazard. Mater., 127, 238–243.
  • Basha, K. M., Rajendran, A., and Thangavelu, V. (2010). Recent advances in the biodegradation of phenol: a review, Asian J. Exp. Biol., 1, 219–234.
  • Cai, B., Han, Y., Liu, B. (2003). Isolation and characterization of an atrazine-degrading bacterium from industrial wastewater in China, Lett. Appl. Microbiol., 36, 272–276.
  • Del Castillo, I., Hernández, P., Lafuente, A., Rodríguez-Llorente, I. D., Caviedes, M. A., and Pajuelo, E. (2012). Self-bioremediation of cork-processing wastewaters by (chloro) phenol-degrading bacteria immobilized onto residual cork particles, Water Res., 46, 1723–1734.
  • Chen, K. C., Chen, C. Y., Peng, J. W., and Houng, J. Y. (2002). Real-time control of an immobilized-cell reactor for wastewater treatment using ORP, Water Res., 36, 230–238.
  • Chen, H. Y., Guan, Y. X., and Yao, S. J. (2013). A novel two-species whole-cell immobilization system composed of marine-derived fungi and its application in wastewater treatment, J. Chem. Technol. Biotechnol., 10, 4253–4260.
  • Cui, J. Q., W, X. J., Yuan, Y. L., Guo, X. W., Gu, X. Y., and Jian, L. (2014). Combined ozone oxidation and biological aerated filter processes for treatment of cyanide containing electroplating wastewater, Chem. Eng. J., 241, 184–189.
  • Gonzalez, G., Herrera, G., Garcia, Ma. T., and Pena, M. (2001). Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized microorganism of Pseudomonas putida, Bioresour. Technol., 80, 137–142.
  • Ha, J., Cady Engler, R., and Wild, J. R. (2009). Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads, Bioresource Technol., 100, 1138–1142.
  • Kariminiaae, H. R, Kanda, K., and Kato, F. (2003). Wastewater Treatment with Bacteria Immobilized onto a Ceramic Carrier in an Aerated System, J. Biosci. Bioeng., 95, 128–132.
  • Kira, O., Budman, H. M., and Robinson, C. W. (2000). Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida, Biotechnol. Bioeng., 70, 291–299.
  • Kumaran, P., and Paruchuri, Y. L. (1997). Kinetics of phenol biotransformation, Water Res., 31, 11–22.
  • Lin, H. Y. Chen, Z. L., Megharaj, M., and Naidu, R. (2013). Biodegradation of TNT using Bacillus mycoides immobilized in PVA–sodium alginate–kaolin, Appl. Clay Sci., 83–84, 336–342.
  • Liu, J. Z., Wang, Q., Yan, J. B., Qin, X. R., Li, L. L., and Xu, W. (2013). Isolation and characterization of a novel phenol degrading bacterial strain WUST-C1, Ind. Eng. Chem. Res., 52, 258–265.
  • Lee, S. Y., Chun, Y. N., and IlKim, S. (2009). Characteristics of phenol degradation by immobilized activated sludge, J. Ind. Eng. Chem., 15, 323–327.
  • Liu, Y. J., Zhang, A. N., and Wang, X. C. (2009). Biodegradation of phenol by using free and immobilized microorganism of Acinetobacter sp. XA05 and Sphingomonas sp. FG03, Biochem. Eng. J., 44, 187–192.
  • Mateo, C., Palomo, J. M., Lorente, G. F., Guisan, J. M., and Lafuente, R. F. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Technol., 40, 1451–1463.
  • Manohar, S., Kim, C. K., and Karegoudar. (2001). Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam, Appl. Microbiol. Biot., 55, 311–316.
  • Muftah, H., El-Naas, Al-Muhtaseb, Shaheen A., and Makhlouf, Souzan. (2009). Biodegradation of phenol by Pseudomonas putida immobilized in polyvinylalcohol (PVA) gel, J. Hazard. Mater., 164, 720–725.
  • Massalha, N., Shaviv, A., and Sabbah, I. (2010). Modeling the effect of immobilization of microorganisms on the rate of biodegradation of phenol under inhibitory conditions, Water Res., 44, 5252–5259.
  • Massalha, N., Basheer, S., and Sabbah, I. (2007). Effect of adsorption and bead size of immobilized biomass on the rate of biodegradation of phenol at high concentration levels, Ind. Eng. Chem. Res., 46, 6820–6824.
  • Patterson, A., Ferreira, A. P., Banks, E., Skeene, K., Clarke, G., Nicholson, S., and Rawlinson-Malone, C. (2015). Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation, Int. J. Pharm., 47, 8348–360.
  • Ratusznei, S. M., Rodrigues, J. A. D., Camargo, E. F. M., Zaiat, M., and Borzani, W. (2000). Feasibility of a stirred anaerobic sequencing batch reactor containing immobilized biomass for wastewater treatment, Bioresour. Technol., 75, 127–132.
  • Sun, J. M., Liu, J. J., Liu, Y. M., Li, Z. J., and Nan, J. Y. (2011). Optimization of entrapping conditions of nitrifying bacteria and selection of entrapping agent, Proc. Environ. Sci., 8, 166–172.
  • Song, H., and He, Z. C. (2005). Characteristics of phenol degradation and kinetics of phenol biodegradation by the strain DP4, Oil Nat. Gas Chem. Ind., 34, 67–69 (in Chinese).
  • Sun, J. H., Sun, S. P., Fan, M. H., Guo, H. Q., Qiao, L. P., and Sun, R. X. (2007). A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process, J. Hazard. Mater., 148, 172–177.
  • Tong, K., Zhang, Y. H., Liu, G. H., Ye, Z. F., and Chu, P. K. (2013). Treatment of heavy oil wastewater by a conventional activated sludge process coupled with an immobilized biological filter, Int. Biodeter. Biodegr., 84, 65–71.
  • Viggiani, A., Olivieri, G., Siani, L., and Donato, A. Di, Marzocchella, A., Salatino, P., Barbieri, P., and Galli E. (2006). An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1, J. Biotechnol., 123, 464–477.
  • Whiteley, A. S., and Bailey, M. J. (2000). Bacterial community structure and physiological state within an industrial phenol bioremediation system, Appl. Environ. Microbiol., 66, 2400–2407.
  • Wang, Y. J., and Li, H. Y. (2004). Advances in immobilized microorganism and it's research on waste water treatment, Biotechnology, 20, 35–36.
  • Xue, Y. P., Xu, M., Chen, H. S., Liu, Z. Q., Wang, Y. J., and Zheng, Y. G. (2013). A novel integrated bioprocess for efficient production of (R)-(−)-mandelic acid with immobilized Alcaligenes faecalis ZJUTB10, Org. Process Res. Dev., 17, 213–220.
  • Zhao, G. H., Zhou, L. C., Li, Y. F., Liu, X. X., Ren, X. J., and Liu, X. L. (2009). Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor, J. Hazard. Mater., 169, 402–410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.