514
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Review: Parametric Study on the Performance of Progressive Cryoconcentration System

, , , &

References

  • Abbas, A., and Romagnoli, J. A. (2007). Multiscale modeling, simulation and validation of batch cooling crystallization, Sep. Purif. Technol., 53(2), 153–163.
  • Aider, M., and Ounis, W. B. (2012). Skim milk cryoconcentration as affected by the thawing mode: Gravitational vs. microwave-assisted, Int. J. Food Sci. Tech., 47(1), 195–202.
  • Aider, M., de Halleux, D., and Melnikova, I. (2009a). Skim milk whey cryoconcentration and impact on the composition of the concentrated and ice fractions, Food Bioprocess Technol., 2(1), 80–88.
  • Aider, M., de Halleux, D., and Melnikova, I. (2008). Gravitational and microwave-assisted thawing during milk whey cryoconcentration, J. Food Eng., 88(3), 373–380.
  • Aider, M., de Halleux, D., and Melnikova, I. (2009b). Skim acidic milk whey cryoconcentration and assessment of its functional properties: Impact of processing conditions, Innov. Food Sci. Emerg., 10(3), 334–341.
  • Bae, S. K., Miyawaki, O., and Arai, S. (1994). Control of freezing front structure and its effect on the concentration efficiency in the progressive freeze-concentration, Cryobiol. Cryotechnol., 40, 29–32.
  • Baker, R. A. (1967a). Trace organic contaminant concentration by freezing—I. Low inorganic aqueous solutions, Water Res., 1(1), 61–77.
  • Baker, R. A. (1967b). Trace organic contaminant concentration by freezing—II: Inorganic aqueous solutions, Water Res., 1(2), 97–113.
  • Baker, R. A. (1969). Trace organic contaminant concentration by freezing—III. Ice washing, Water Res., 3(9), 717–730.
  • Bayindirli, L., Özilgen, M., and Ungan, S. (1993). Mathematical analysis of freeze concentration of apple juice, J. Food Eng., 19(1), 95–107.
  • Beier, N., Sego, D., Donahue, R., and Biggar, K. (2007). Laboratory investigation on freeze separation of saline mine waste water, Cold Reg. Sci. Technol., 48(3), 239–247.
  • Bomben, J. L., and King, C. J. (1982). Heat and mass transport in the freezing of apple tissue, Int. J. Food Sci. Technol., 17(5), 615–632.
  • Braddock, R. J., and Marcy, J. E. (1987). Quality of freeze concentrated orange juice, J. Food Sci., 52(1), 159–162.
  • Bremer Boaventura, B. C., da Silva, E. L., Liu, R. H., Prudêncio, E. S., Di Pietro, P. F., Becker, A. M., and Amboni, R. D. D. M. C. (2015). Effect of yerba mate (Ilex Paraguariensis A. St. Hil.) infusion obtained by freeze concentration technology on antioxidant status of healthy individuals, LWT – Food Sci. Technol., 62(2), 1–7.
  • Burdo, O. G., Kovalenko, E. A., and Kharenko, D. A. (2008). Intensification of the processes of low-temperature separation of food solutions, Appl. Therm. Eng., 28(4), 311–316.
  • Burton, J. A., Prim, R. C., and Slichter, W. P. (1953). The distribution of solute in crystals grown from the melt. Part I. Theoretical, J. Chem. Phys., 21(11), 1987–1991.
  • Buss, D. D. (1993). Milk goes arctic: Freeze-concentrated milk is first major alternative to thermally evaporated milk, Food Processing, Putman Media Inc., Chicago, pp. 62–64.
  • Cao, W., Beggs, C., and Mujtaba, I. M. (2015). Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy, Desalination, 355, 22–32.
  • Caretta, O., Courtot, F., and Davies, T. (2006). Measurement of salt entrapment during the directional solidification of brine under forced mass convection, J. Cryst. Growth, 294(2), 151–155.
  • Chen, X. D., Chen, P., and Free, K. W. (1997). A note on the two models of ice growth velocity in aqueous solutions derived from an irreversible thermodynamics analysis and the conventional heat and mass transfer theory, J. Food Eng., 31(3), 395–402.
  • Chen, P., Chen, X. D., and Free, K. W. (1998). Solute inclusion in ice formed from sucrose solutions on a sub-cooled surface-an experimental study, J. Food Eng., 38, 1–13.
  • Chen, Y. H., Cao, E., and Cui, Z. F. (2001). An experimental study of freeze concentration in biological media, Food Bioprod. Process., 79(1), 35–40.
  • Chernov, A. A. (1984). Modern Crystallography III: Crystal Growth, Springer, New York.
  • Curran, H. M. (1970). Water desalination by indirect freezing, Desalination, 7(3), 273–284.
  • Deshpande, S. S., Cheryan, M., Sathe, S. K., Salunkhe, D. K., and Luh, B. S. (1984). Freeze concentration of fruit juices, CRC Cr. Rev. Food Sci., 20(3), 173–248.
  • Escalante-Minakata, P., Ibarra-Junquera, V., Emparan-Legaspi, M., OrnelasPaz, J. J., Chávez-Rodríguez, A. M., Pérez-Martínez, J. D., VillaVelázquez-Mendoza, C. I. (2013). Evaluation of the freezing and thawing cryoconcentration process on bioactive compounds present in banana juice from three different cultivars, Int. J. Food Eng., 9(4), 1–11.
  • Flesland, O. L. A. (1995). Freeze concentration by layer crystallization, Dry. Technol., 13(8–9), 1713–1739.
  • Fujioka, R., Wang, L. P., Dodbiba, G., and Fujita, T. (2013). Application of progressive freeze-concentration for desalination, Desalination, 319, 33–37.
  • Gay, G., Lorain, O., Azouni, A., and Aurelle, Y. (2003). Wastewater treatment by radial freezing with stirring effects, Water Res., 37(10), 2520–2524.
  • Glen, J. W. (1974). The Physics of Ice. Cold Regions Science and Engineering Monograph IIC2A. CRREL and Hanover, New Hampshire.
  • Gu, X., Watanabe, M., Suzuki, T., and Miyawaki, O. (2008). Limiting partition coefficient in a tubular ice system for progressive freeze-concentration, Food Sci. Technol. Res., 14(3), 249–252.
  • Gu, X., Suzuki, T., and Miyawaki, O. (2005). Limiting partition coefficient in progressive freeze-concentration, J. Food Sci., 70(9), E546–E551.
  • Gulfo, R., Auleda, J. M., Moreno, F. L., Ruiz, Y., Hernández, E., and Raventós, M. (2014). Multi-plate freeze concentration: recovery of solutes occluded in the ice and determination of thawing time, Food Sci. Technol. Int., 20(6), 405–419.
  • Gunathilake, M., Dozen, M., Shimmura, K., and Miyawaki, O. (2014). An apparatus for partial ice-melting to improve yield in progressive freeze-concentration, J. Food Eng., 142, 64–69.
  • Halde, R. (1979). Concentration of impurities by progressive freezing, Water Res., 14(6), 575–580.
  • Hamoda, M. (2001). Desalination and water resource management in Kuwait, Desalination, 138(1–3), 165.
  • Hartel, R. W. (1992). Evaporation and Freeze Concentration, in: Heldman, D. R. and Lund, D. B. (eds.), Handbook of Food Engineering, Marcel Dekker, New York.
  • Hartel, R. W., and Espinel, L. A. (1993). Freeze concentration of skim milk, J. Food Eng., 20(2), 101–120.
  • Hernández, E., Raventós, M., Auleda, J. M., and Ibarz, A. (2009). Concentration of apple and pear juices in a multi-plate freeze concentrator, Innov. Food Sci. Emerg., 10(3), 348–355.
  • Hernández, E., Raventós, M., Auleda, J. M., and Ibarz, A. (2010). Freeze concentration of must in a pilot plant falling film cryoconcentrator, Innov. Food Sci. Emerg., 11(1), 130–136.
  • Ho, W. S., and Sirkar, K. K. (1992). Membrane Handbook, Van Nostrand Reinhold, New York.
  • Holt, S. (1999). The role of freeze concentration in waste, Filtr. Separat., 36, 34–35.
  • Huige, N. J. J., and Thijssen, H. A. C. (1972). Production of large crystals by continuous ripening in a stirred tank, J. Cryst. Growth, 13, 483–487.
  • Hunter, G., and Hayslet, R. (2002). Task 2.6: Mechanical Freeze/Thaw and Freeze Concentration of Water and Wastewater Residuals, California Energy Commission Sacramento, California.
  • Hurle, D. T. J. (1961). Constitutional supercooling during crystal growth from stirred melts—I: Theoretical, Solid-State Electron., 3(1), 37–44.
  • Iritani, E., Katagiri, N., Okada, K., Cao, D. Q., and Kawasaki, K. (2013). Improvement of concentration performance in shaking type of freeze concentration, Sep. Purif. Tech., 120, 445–451.
  • Johnson, D. W., Lott, J. L., and Sliepcevich, C. M. (1976). The exchange crystallization freeze desalination process, Desalination, 18(3), 231–240.
  • Jusoh, M. (2010). Development of a Novel System for Progressive Freeze Concentration Process. Doctor Philosophy, Universiti Teknologi Malaysia, Skudai.
  • Jusoh, M., Mohd Yunus, R., and Abu Hassan, M. A. (2009). Development of a new crystallisation chamber for a progressive freeze concentration system, Recent Advance in Technologies, Chapter 33. Development of a new crystallisation chamber for a progressive freeze concentration system, InTech, Malaysia, pp. 587–600.
  • Jusoh, M., Mohd Yunus, R., and Abu Hassan, M. A. (2008a). Effect of flowrate and coolant temperature on the efficiency of progressive freeze concentration on simulated wastewater, World Acad. Sci., Eng. Technol., 47, 75–78.
  • Jusoh, M., Mohd Yunus, R., and Abu Hassan, M. A. (2008b). Effect of initial concentration of solution and coolant temperature on a new progressive freeze concentration system, J. Chem. Nat. Resour. Eng., Special Edition, 122–129.
  • Kawasaki, K., Matsuda, A., and Kadota, H. (2006). Freeze concentration of equal molarity solutions with ultrasonic irradiation under constant freezing rate: Effect of solute, Chem. Eng. Res. Des., 84(2), 107–112.
  • Kobayashi, S., and Lee, G. F. (1964). Freeze-concentration of dilute aqueous solutions, Anal. Chem., 36(11), 2197–2198.
  • Kolhe, P., and Badkar, A. (2011). Protein and solute distribution in drug substance containers during frozen storage and post-thawing: A tool to understand and efine freezing–thawing parameters in biotechnology process development, Biotech. Progress., 27(2), 494–504.
  • Lemmer, S., Klomp, R., Ruemekorf, R., and Scholz, R. (2001). Preconcentration of wastewater through the niro freeze concentration process, Chem. Eng. Technol., 24(5), 485–488.
  • Liang, B., Shi, Y., and Hartel, R. W. (1999). Freeze Concentration of Aqueous Solutions with High Efficiency, IFT Annual Meeting, Chicago, USA.
  • Liu, L., Miyawaki, O., and Hayakawa, K. (1999). Progressive freeze concentration of tomato juice, Food Sci. Technol. Int., 5, 108–112.
  • Liu, L., Miyawaki, O., and Nakamura, K. (1997). Progressive freeze concentration of model liquid food, Food Sci. Technol. Int., 3, 348–352.
  • Lorain, O., Thiebaud, P., Badorc, E., and Aurelle, Y. (2001). Potential of freezing in wastewater treatment: Soluble pollutant applications, Water Res., 35(2), 541–547.
  • Luo, C. S., Chen, W. W., and Han, W. F. (2010). Experimental study on factors affecting the quality of ice crystal during the freezing concentration for the brackish water, Desalination, 260(1–3), 231–238.
  • Mahmutoğlu, T., and Esin, A. (1996). Distribution coefficients at the interface for carrot juice at slow freezing rates, J. Food Eng., 27(3), 291–295.
  • Martel, C. J. (2000). Influence of dissolved solids on the mechanism of freeze–thaw conditioning, Water Res., 34(2), 657–662.
  • Matthews, J. S., and Coggeshall, N. D. (1959). Concentration of impurities from organic compounds by progressive freezing, Anal. Chem., 31, 1124–1125.
  • Matsuda, A., Kawasaki, K., and Kadota, H. (1999). Freeze concentration with supersonic radiation under constant freezing rate – Effect of kind and concentration of solutes, J. Chem. Eng. Jpn., 32(5), 569–572.
  • Miyawaki, O. (2001). Analysis and control of ice crystal structure in frozen food and their application to food processing, Food Sci. Technol. Res., 7, 1–7.
  • Miyawaki, O., Kato, S., and Watabe, K. (2012). Yield improvement in progressive freeze-concentration by partial melting of ice, J. Food Eng., 108(3), 377–382.
  • Miyawaki, O., Liu, L., and Nakamura, K. (1998). Effective partition constant of solute between ice and liquid phases in progressive freeze-concentration, J. Food Sci., 63(5), 756–758.
  • Miyawaki, O., Liu, L., Shirai, Y., Sakashita, S., and Kagitani, K. (2005). Tubular ice system for scale-up of progressive freeze-concentration, J. Food Eng., 69(1), 107–113.
  • Monceaux, D. A., and Kuehner, D. (2009). The Alcohol, 5th ed., Lallemand Ethanol Technology and Nottingham University Press, United Kingdom.
  • Moreno, F. L., Hernández, E., Raventós, M., Robles, C., and Ruiz, Y. (2014a). A process to concentrate coffee extract by the integration of falling film and block freeze-concentration, J. Food Eng., 128, 88–95.
  • Moreno, F. L., Raventós, M., Hernández, E., and Ruiz, Y. (2014b). Behaviour of falling-film freeze concentration of coffee extract, J. Food Eng., 141, 20–26.
  • Moreno, F. L., Raventós, M., Hernández, E., and Ruiz, Y. (2014c). Block freeze-concentration of coffee extract: Effect of freezing and thawing stages on solute recovery and bioactive compounds, J. Food Eng., 120, 158–166.
  • Moreno, F. L., Robles, C. M., Sarmiento, Z., Ruiz, Y., and Pardo, J. M. (2013). Effect of separation and thawing mode on block freeze-concentration of coffee brews, Food Bioprod. Process., 91(4), 396–402.
  • Morison, K. R., and Hartel, R. W. (2007). Evaporation and Freeze Concentration, in: Heldman, D. R. and Lund, D. B. (eds.), Handbook of Food Engineering, pp. 495–552, Marcel Dekker, New York.
  • Muller, M., and Sekoulov, I. (1992). Waste water reuse by freeze concentration with a falling film reactor, Water Sci. Technol., 26, 1475–1482.
  • Nakagawa, K., Maebashi, S., and Maeda, K. (2009). Concentration of aqueous dye solution by freezing and thawing, Can. J. Chem. Eng., 87(5), 779–787.
  • Nakagawa, K., Maebashi, S., and Maeda, K. (2010a). Freeze-thawing as a path to concentrate aqueous solution, Sep. Purif. Technol., 73(3), 403–408
  • Nakagawa, K., Nagahama, H., Maebashi, S., and Maeda, K. (2010b). Usefulness of solute elution from frozen matrix for freeze-concentration technique, Chem. Eng. Res. Des., 88(5–6), 718–724.
  • Nazir, S., and Farid, M. M. (2008). Modeling ice removal in fluidized-bed freeze concentration of apple juice, AIChE J., 54(11), 2999–3006.
  • Nebbia, G., and Menozzi, G. N. (1968). Early experiments on water desalination by freezing, Desalination, 5(1), 49–54.
  • Nonthanum, P., and Tansakul, A. (2008). Freeze concentration of lime juice, J. Sci. Technol., 1, 27–37.
  • Okawa, S., Ito, T., and Saito, A. (2009). Effect of crystal orientation on freeze concentration of solutions, Int. J. Refrig., 32(2), 246–252.
  • Olowofoyeku, A. K., Gil, D., and Kramer, A. (1980). Freeze concentration of apple juice by rotational unidirectional cooling, Int. J. Refrig., 3, 93–97.
  • Pachter, M., and Barak, A. (1967). The vacuum freezing vapor compression (Zarchin) process present status and future trends, Desalination, 2(3), 358–367.
  • Petzold, G., and Aguilera, J. M. (2013). Centrifugal freeze concentration, Innov. Food Sci. Emerg., 20, 253–258.
  • Petzold, G., Niranjan, K., and Aguilera, J. M. (2013). Vacuum-assisted freeze concentration of sucrose solutions, J. Food Eng., 115(3), 357–361.
  • Pradistsuwana, C., Theprugsa, P., and Miyawaki, O. (2003). Measurement of limiting partition coefficient in progressive freeze-concentration, Food Sci. Technol. Res., 9(2), 190–192.
  • Qin, F., Chen, X. D., Ramachandra, S., and Free, K. (2006). Heat transfer and power consumption in a scraped-surface heat exchanger while freezing aqueous solutions, Sep. Purif. Technol., 48(2), 150–158.
  • Qin, F. G. F., Chen, X. D., and Farid, M. M. (2004). Growth kinetics of ice films spreading on a subcooled solid surface, Sep. Purif. Technol., 39(1–2), 109–121.
  • Qin, F. G. F., Russell, A. B., Chen, X. D., and Robertson, L. (2003). Ice fouling on a subcooled metal surface examined by thermo-response and electrical conductivity, J. Food Eng., 59(4), 421–429.
  • Ramos, F. A., Delgado, J. L., Bautista, E., Morales, A. L., and Duque, C. (2005). Changes in volatiles with the application of progressive freeze-concentration to Andes berry (Rubus glaucus Benth), J. Food Eng., 69, 291–297.
  • Raventós, M., Hernández, E., Auleda, J., and Ibarz, A. (2007). Concentration of aqueous sugar solutions in a multi-plate cryoconcentrator, J. Food Eng., 79(2), 577–585.
  • Rice, W., and Chau, D. S. C. (1997). Freeze desalination using hydraulic refrigerant compressors, Desalination, 109, 157–164.
  • Rich, A., Mandri, Y., Bendaoud, N., Mangin, D., Abderafi, S., Bebon, C., Semlali, N., Klein, J.-P., Bounahmidi, T., Bouhaouss, A., and Veesler, S. (2010). Freezing desalination of sea water in a static layer crystallizer, Desalin. Water. Treat., 13(1–3), 120–127.
  • Rich, A., Mandri, Y., Mangin, D., Rivoire, A., Abderafi, S., Bebon, C., Semlali, N., Klein, J.-P., Bounahmidi, T., Bouhaouss, A., and Veesler, S. (2012). Sea water desalination by dynamic layer melt crystallization: Parametric study of the freezing and sweating steps, J. Cryst. Growth., 342(1), 110–116.
  • Rodríguez, M., Luque, S., Alvarez, J., and Coca, J. (2000). A comparative study of reverse osmosis and freeze concentration for the removal of valeric acid from wastewaters, Desalination, 127(1), 1–11.
  • Rohatgi, P. K., and Adams, C. M. (1967a). Effect of freezing rates on dendritic solidification of ice from aqueous solutions, Trans. Metall. Soc. AIME, 239, 1729–1736.
  • Rohatgi, P. K., and Adams, C. M. (1967b). Dendritic solidification of aluminium-copper alloys, Trans. Metall. Soc. AIME, 239, 1737–1746.
  • Roos, A. C., Verschuur, R. J., Schreurs, B., Scholz, R., and Jansens, P. J. (2003). Development of a vacuum crystallizer for the freeze concentration of industrial waste water, Chem. Eng. Res. Des., 81(8), 881–892.
  • Ruiz, R. Y., and Caicedo, L. A. (2009). Progressive freeze-concentration of sucrose solutions, The 8th World Congress of Chemical Engineering, Canada.
  • Sánchez, J., Hernández, E., Auleda, J. M., and Raventós, M. (2011). Freeze concentration of whey in a falling-film based pilot plant: Process and characterization, J. Food Eng., 103(2), 147–155.
  • Sánchez, J., Ruiz, Y., Auleda, J. M., Hernández, E., and Raventós, M. (2009). Review. Freeze concentration in the fruit juices industry, Food Sci. Technol. Int., 15(4), 303–315.
  • Sánchez, J., Ruiz, Y., Raventós, M., Auleda, J. M., and Hernández, E. (2010). Progressive freeze concentration of orange juice in a pilot plant falling film, Innov. Food Sci. Emerg., 11(4), 644–651.
  • Shapiro, J. (1973). Freezing-out, a safe technique for concentration of dilute solutions, Science, 133, 2063–2064.
  • Shirai, Y., Wakisaka, M., Miyawaki, O., and Sakashita, S. (1998). Conditions of producing an ice layer with high purity for freeze wastewater treatment, J. Food Eng., 38(3), 297–308.
  • Shirai, Y., Wakisaka, M., Miyawaki, O., and Sakashita, S. (1999). Effect of seed ice on formation of tube ice with high purity for a freeze wastewater treatment system with a bubble-flow circulator, Water Res., 33(5), 1325–1329.
  • Sung-Hee, P., Jee-Yeon, K., Geun-Pyo, H., Hae-Soo, K., and Sang-Gi, M. (2006). Effect of ice recrystallization on freeze concentration of milk solutes in a lab-scale unit, Food Sci. Biotechnol., 15, 196–201.
  • Ulrich, J., and Bulau, H. C. (2002). Melt Crystallization, in: Myerson, A. S. (ed.), Handbook of Industrial Crystallization, pp. 161–179, Butterworth-Heinemann, Woburn.
  • Ulrich, J., and Glade, H. (2003). Melt Crystallisation, Shaker Verlag, Germany.
  • Vaessen, R. J. C., Himawan, C., and Witkamp, G. J. (2002). Scale formation of ice from electrolyte solutions on a scraped surface heat exchanger plate, J. Cryst. Growth, 237–239 (Part 3), 2172–2177.
  • Van Mil, P. J. J. M., and Bouman, S. (1990). Freeze concentration of dairy products, Neth Milk Dairy J., 44, 21–31.
  • Van Niistelrooj, M. (1998). Freeze Concentration and Its Application in the Industry, Niro Process Technology Publications, Netherlands.
  • Wakisaka, M., Shirai, Y., and Sakashita, S. (2001). Ice crystallization in a pilot-scale freeze wastewater treatment system, Chem. Eng. Process., 40(3), 201–208.
  • Wallace, E. J. (1979). Indirect freezing, Desalination, 31, 417–425.
  • Watanabe, M., and Arai, S. (1987). Freezing of water in the presence of the ice nucleation active bacterium, Erwinia ananas, and its application for efficient freeze-drying of foods, Agric. Biol. Chem., 51, 557–563.
  • Williams, P. M., Ahmad, M., and Connolly, B. S. (2013). Freeze desalination: An assessment of an ice maker machine for desalting brines, Desalination, 308, 219–224.
  • Williams, P. M., Ahmad, M., Connolly, B. S., and Oatley-Radcliffe, D. L. (2015). Technology for freeze concentration in the desalination industry, Desalination, 356, 314–327.
  • Williamson, R. B., and Chalmers, B. (1966). Crystal Growth. Paper presented at the International Conference on Crystal Growth, Oxford.
  • Xie, L., Ma, J., Cheng, F., Li, P., Liu, J., Chen, W., and Wang, S. (2009). Study on sea ice desalination technology, Desalination, 245(1–3), 146–154.
  • Yu, T., Ma, J. Z., and Li, Q. (2007). Factors affecting ice crystal purity during freeze concentration process for urine treatment, J. Harbin Ins. Tech., 14, 593–597.
  • Zhang, Z., and Hartel, R. W. (1996). A multilayer freezer for freeze concentration of liquid milk, J. Food Eng., 29 (1), 23–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.