106
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Acceleration of the Rate of Silver Nanoparticle Formation Using Microbubbles in a Sonochemical Process

, , , &

References

  • Anderson, C. R., Hu, X., Zhang, H., Tlaxca, J., Decleves, A., Houghtaling, R., Sharma, K., Lawrence, M., Ferrara, K. W., and Rychak, J. J. (2011). Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent, Invest. Radiol., 46, 215–224.
  • Burdin, F., Tsochatzidis, N. A., Guiraud, P., Wilhelm, A. M., and Delmas, H. (1999). Characterisation of the acoustic cavitation cloud by two laser techniques, Ultrason. Sonochem., 6, 43–51.
  • Caruso, R. A., Ashokkumar, M., and Grieser, F. (2000). Sonochemical formation of colloidal platinum, Colloids Surfaces A, 169, 219–225.
  • Emadi, H., Salavati-Niasari, M., and Davar, F. (2011). Synthesis and characterisation of silver sulphide nanoparticles by ultrasonic method, Micro. Nano Lett., 6, 909–913.
  • Gedanken, A. (2004). Using sonochemistry for the fabrication of nanomaterials, Ultrason. Sonochem., 11, 47–55.
  • Goto, Y., Serizawa, A., Eguchi, T., Tanaka, H., and Izumi, M. (2006). Oil separation from oil polluted soil by micro bubble injection and separation mechanisms, Jpn. J. Multiphase Flow, 20, 39–49.
  • Imadate, F., and Kawabata, J. (2004). A soil washing technique for oil contaminated sand by using micro bubbles, Proc. Jpn. Soc. Civil Eng., 776, 39–48.
  • Jafari, M., Sobhani, A., and Salavati-Niasari, M. (2014). Effect of preparation conditions on synthesis of Ag2Se nanoparticles by simple sonochemical method assisted by thiourea, J. Ind. Eng. Chem., 20, 3775–3779.
  • Jafari, M., Salavati-Niasari, M., Saberyan, K., and Sabarou, H. (2015). A simple sonochemical route for synthesis silver selenide nanoparticles from SeCl4 and silver salicylate, synthesis and reactivity in inorganic, Metal-Organic Nano-Metal Chem., 45, 58–67.
  • Khuntia, S., Majumder, S. K., and Ghosh, P. (2012). Removal of ammonia from water by ozone microbubbles, Ind. Eng. Chem. Res., 52, 318–326.
  • Kukizaki, M., and Goto, M. (2006). Size control of nanobubbles generated from shirasu-porous-glass (SPG) membranes, J. Membrane Sci., 281, 386–396.
  • Li, P., Tsuge, H., and Itoh, K. (2009). Oxidation of dimethyl sulfoxide in aqueous solution using microbubbles, Ind. Eng. Chem. Res., 48, 8048–8053.
  • Link, S., and El-Sayed, M. A. (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B, 103, 8410–8426.
  • Makuta, T., Aizawa, Y., and Suzuki, R. (2012). Sonochemical reaction with microbubbles generated by hollow ultrasonic horn, Ultrason. Sonochem., 20, 997–1001.
  • Mason, T. J., and Lorimer, J. P. (2002). Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing. Wiley-VCH, Weinheim.
  • McNamara III, W. B., Didenko, Y. T., and Suslick, K. S. (1999). Sonoluminescence temperatures during multi-bubble cavitation, Nature (London), 401, 772–775.
  • McNamara III, W. B., Didenko, Y. T., and Suslick, K. S. (2003). Pressure during sonoluminescence, J. Phys. Chem. B, 107, 7303–7306.
  • Miyamoto, M., Ueyama, S., Hinomoto, N., Saitoh, T., Maekawa, S., and Hirotsuji, J. (2007). Degreasing of solid surfaces by microbubble cleaning, Jpn. J. Appl. Phys., 46, 1236–1243.
  • Mizukoshi, Y., Takagi, E., Okuno, H., Oshima, R., Maeda, Y., and Nagata, Y. (2001). Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants, Ultrason. Sonochem., 8, 1–6.
  • Mohandes, F., and Salavati-Niasari, M. (2013a). Application of a new coordination compound for the preparation of AgI nanoparticles, Mater. Res. Bull., 48, 3773–3782.
  • Mohandes, F., and Salavati-Niasari, M. (2013b). Sonochemical synthesis of silver vanadium oxide micro/nanorods: Solvent and surfactant effects, Ultrason. Sonochem., 20, 354–365.
  • Mousavi-Kamazani, M., and Salavati-Niasari, M. (2014). A simple microwave approach for synthesis and characterization of Ag2S–AgInS2 nanocomposites, Composites Part B, 56, 490–496.
  • Muroyama, K., Kawabata, A., Yamaguchi, Y., and Hayashi, J. (2012). Degradation characteristics of phenolic compounds using micro-bubbles of ozonated oxygen, J. Chem. Eng. Jpn., 45, 678–684.
  • Ohno, T., Iizuka, A., Shibata, E., and Nakamura, T. (2012). Basic study on a washing method utilizing high-speed moving of micro bubbles under ultrasound irradiation, Kagaku Kogaku Ronbunshu, 38, 61–67.
  • Okitsu, K., Mizukoshi, Y., Bandou, H., Maeda, Y., Yamamoto, T., and Nagata, Y. (1996). Formation of noble metal particles by ultrasonic irradiation, Ultrason. Sonochem., 3, S249–S251.
  • Okitsu, K., Yue, A., Tanabe, S., Matsumoto, H., Yobiko, Y., and Yoo, Y. (2002). Sonolytic control of rate of gold (III) reduction and size of formed gold nanoparticles: relation between reduction rates and sizes of formed nanoparticles, Bull. Chem. Soc. Jpn., 75, 2289–2296.
  • Onari, Y. (2010). Ultrasonic cleaning with ozone microbubble, Sep. Technol., 40, 156–161.
  • Peng, S., Xiong, Y., Li, K., He, M., Deng, Y., Chen, L., Zou, M., Chen, W., Wang, Z., He, J., and Zhang, L. (2012). Clinical utility of a microbubble-enhancing contrast (“Sonovue”) in treatment of uterine fibroids with high intensity focused ultrasound: A retrospective study, Eur. J. Radiol., 81, 3832–3838.
  • Roucoux, A., Schulz, J., and Patin, H. (2002). Reduced transition metal colloids: A novel family of reusable catalysts?, Chem. Rev., 102, 3757–3778.
  • Shibata, E., Saito, S., and Nakamura, T. (2008). Froth separation of ferrihydrite slurry using microbubbles with ultrasonic irradiation, Mater. Trans., 49, 1681–1687.
  • Shibata, E., Hasegawa, S., and Nakamura, T. (2009). Hexane emulsion separation using microbubbles. Proceedings of the 10th International Symposium on East Asian Resources Recycling Technology, 722–725, Jejudo, Korea.
  • Soofivand, F., Mohandes, F., and Salavati-Niasari, M. (2013). Silver chromate and silver dichromate nanostructures: Sonochemical synthesis, characterization, and photocatalytic properties, Mater. Res. Bull., 48, 2084–2094.
  • Soofivand, F., Salavati-Niasari, M., and Mohandes, F. (2014). AgSCN micro/nanostructures: Facile sonochemical synthesis, characterization, and photoluminescence properties, J. Ind. Eng. Chem., 20, 3780–3788.
  • Takahashi, M., Kawamura, T., Yamamoto, Y., Ohnari, H., Himuro, S., and Shakutsui, H. (2003). Effect of shrinking microbubbles on gas hydrate formation, J. Phys. Chem. B, 107, 2171–2173.
  • Tano, Y., Iizuka, A., Shibata, E., and Nakamura, T. (2013). Physical washing method for the removal of press oil using the high-speed movement of microbubbles under ultrasonic irradiation, Ind. Eng. Chem. Res., 52, 15658–15663.
  • Terasaka, K., and Shinpo, Y. (2007). Separation of fine particles suspended in water using microbubble flotation, Jpn. J. Multiphase Flow, 21, 77–83.
  • Terasaka, K., Aoki, S., and Kobayashi, D. (2008). Removal of iron oxide fine particles from waste water using microbubble flotation, Prog. Multiphase Flow Res., 3, 43–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.