939
Views
59
CrossRef citations to date
0
Altmetric
Review Article

Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status

, &

References

  • Aceituno Melgar, V. M., Kim, J., and Othman, M. R. (2015). Zeolitic imidazolate framework membranes for gas separation: a review of synthesis methods and gas separation performance, J. Ind. Eng. Chem., 28, 1–15.
  • Adymkanov, S. V., Yampolskii, Y. P., Polyakov, A. M., Budd, P. M., Reynolds, K. J., McKeown, N. B., and Msayib, K. J. (2008). Pervaporation of alcohols through highly permeable PIM-1 polymer films, Polym. Sci. A, 50(4), 444–450
  • Ahn, J., Chung, W. J., Pinnau, I., Song, J., Du, N., Robertson, G. P., and Guiver, M. D. (2010). Gas transport behavior of mixed matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1), J. Membr. Sci., 346, 280–287.
  • Alentiev, A. Y., Bondarenko, G. N., Kostina, Y. V., Shantarovich, V. P., Klyamkin, S. N., Fedin, V. P., Kovalenko, K. A., and Yampolskii, Y. P. (2014). PIM-1/MIL-101 hybrid composite membrane material: Transport properties and free volume, Pet. Chem., 5(7), 12–17.
  • Althumayri, K., Harrison, W. J., Shin, Y., Gardiner, J. M., Casiraghi, C., Budd, P. M., Bernardo, P., Clarizia, G., and Jansen, J. C. (2016). The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1, Phil. Trans. R. Soc. A, 374, 1–9.
  • Aroon, M. A., Ismail, A. F., Matsuura, T., and Montazer-Rahmati, M. M. (2010). Performance studies of mixed matrix membranes for gas separation: a review, Sep. Purif. Technol., 75, 229–242.
  • Baker, R. W. (2004). Membrane Technology and Applications, JohnWiley & Sons, New York.
  • Bernardo, P., Drioli, E., and Golemme, G. (2009). Membrane gas separation: a review/ state of the art, Ind. Eng. Chem. Res., 48(10), 4638–4663.
  • Budd, P. M., Gahnem, B. S., Msayib, K. J., McKeown, N. B., and Tattershall, C. E. (2003). A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an absorbent and catalyst support, J. Mater. Chem., 13, 2721–2726.
  • Budd, P. M., Elabas, E. S., Gahnem, B. S., Makshseed, S., McKeown, N. B., Msayib, K. J., Tattershall, C. E., and Wang, D. (2004a). Solution processed, organophilic membrane derived from a polymer of intrinsic microporosity, Adv. Mater., 16(5), 456–459.
  • Budd, P. M., Gahnem, B. S., Makshseed, S., McKeown, N. B., Msayib, K. J., and Tattershall, C. E. (2004b). Polymers of intrinsic microporosity (PIMs); robust, solution-processable, organic nanoporous materials, Chem. Commun., 230–231.
  • Budd, P. M., Msayib, K. J., Tattershall, C. E., Gahnem, B. S., Reynolds, K. J., McKeown, N. B., and Fritsch, D. (2005). Gas separation membranes from polymers of intrinsic microporosity, J. Membr. Sci., 251, 263–269.
  • Budd, P. M., McKeown, N. B., and Fritsch, D. (2006). Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications, Macromol. Symp., 245–246, 403–405.
  • Budd, P. M., McKeown, N. B., Ghanem, B. S., Msayib, K. J., Fritsch, D., Starannikova, L., Belov, N., Sanfirova, O., Yampolskii, Y., and Shantarovich, V. (2008). Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1, J. Membrane Sci., 325, 851–860.
  • Buonomenna, M. G., Yave, W., and Golemme, G. (2012). Some approaches for high performance polymer based membranes for gas separation: Block copolymers, carbon molecular sieves and mixed matrix membranes, RSC Adv., 2, 10745–10773.
  • Burmann, P., Zornoza, B., Téllez, C., and Coronas, J. (2014). Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via spin coating for gas separation, Chem. Eng. Sci., 107, 66–75.
  • Bushell, A. F., Attfield, M. P., Mason, C. R., Budd, P. M., Yampolskii, Y., Starannikova, L., Rebrov, A., Bazzarelli, F., Bernardo, P., Jansen, J. C., Lanc, M., Friess, K., Shantarovich, V., Gustov, V., and Isaeva, V. (2013). Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8, J. Membr. Sci., 427, 48–62.
  • Campo, M., Tanaka, A., Mendes, A., and Sousa, J. M. (2011). Characterization of membranes for energy and environmental applications. In: Advanced Membranes Science and Technology for Sustainable Energy and Environmental Applications by Basile, A. Pereira, Nunes, S. Elsevier, Cambridge, UK.
  • Carta, M., Malpass-Evans, R., Croad, M., Rogan, Y., Jansen, J. C., Bernardo, P., Bazarelli, F., and McKeown, N. B. (2013). An efficient polymer molecular sieve for membrane gas separations, Science, 339, 303–307.
  • Carta, M., Bernardo, P., Clarizia, G., Jansen, J. C., and McKeown, N. B. (2014). Gas permeability of Hexaphenylbenzene based polymers of intrinsic microporosity, Macromolecules, 47, 8320–8327.
  • Chang, K. S., Tung, K. L., Lin, Y. F., and Lin, H. Y. (2013). Molecular modelling of polyimides with intrinsic microporosity: from structural characteristics to transport behavior, RSC Adv., 3, 1403–1413.
  • Chen, X. Y., Vinh-Tang, H., Rodrigue, D., and Kaliaguine, S. (2012). Amine-functionalized MIL-53 metal−organic framework in polyimide mixed matrix membranes for CO2/CH4 separation, Ind. Eng. Chem. Res., 51, 6895–6906.
  • Davey, C. J., Leak, D., and Patterson, D. A. (2016) Hybrid and Mixed Matrix Membranes for Separations from Fermentations, Membranes, 6(17), 1–38
  • De Angelis, M. A., Gaddoni, R., and Sarti, G. C. (2013). Gas solubility, diffusivity, permeability, and selectivity in mixed matrix membranes based on PIM-1 and fumed silica, Ind. Eng. Chem. Res., 52, 10506–10520.
  • Dong, G., Li, H., and Chen, V. (2013). Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem., 1, 4610–4630.
  • Drioli, E., and Barbieri, G. (2011). Membrane Engineering for the Treatment of Gases: Gas-Separation Problems with Membranes, RSC Publishing, Cambridge, UK.
  • Du, N., Robertson, G. P., Song, J., Pinnau, I., Thomas, S., and Guiver, M. D. (2008). Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation, Macromolecules, 41, 9656–9662.
  • Du, N., Robertson, G. P., Pinnau, I., and Guiver, M. D. (2010). Polymers of intrinsic microporosity with dinaphthyl and thianthrene segments. Macromolecules, 43, 8580–8587.
  • Du, N., Dal-Cin, M. M., Pinnau, I., Nicalek, A., Robertson, G. P., and Guiver, M. D. (2011). Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation, Macromol. Rapid Commun., 32, 631–636.
  • Emmler, T., Heinrich, K., Fritsch, D., Budd, P. M., Chaukura, N., Ehlers, D., Ratzke, K., and Faupel, F. (2010). Free volume investigation of Polymers of intrinsic microporosity (PIMs): PIM-1 and PIM1 copolymers incorporating ethanoanthracene units, Macromolecules, 43, 6075–6084.
  • Erucar, I., and Keskin, S. (2013). High CO2 selectivity of an amine-fuctionalized metal organic framework in adsorption-based and membrane-based gas separations, Ind. Eng. Chem. Res., 52, 3462–3472.
  • Fang, M., Wu, C., Yang, Z., Wang, T., Xia, Y., and Li, J. (2015). ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: experimental result and permeation model validation, J. Membr. Sci., 474, 103–113.
  • Frentrup, H., Hart, K. E., Colina, C. M., and Muller, E. A. (2015). In silico determination of gas permeabilities bu non-equilibrium molecular dinamics: CO2 and He through PIM-1, Membranes, 5, 99–119.
  • Fritsch, D., Bengtson, G., Carta, M., and McKeown, N. B. (2011). Synthesis and gas permeation properties of spirobischromane-based polymers of intrinsic microporosity, Macromol. Chem. Phys., 212, 1137–1146.
  • Fritsch, D., Merten, P., Heinrich, K., Lazar, M., and Priske, M. (2012). High performance organic solvent nanofiltration membranes: development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs), J. Membr. Sci. 401–402, 222.
  • Ghanem, B. S., McKeown, N. B., Budd, P. M., Al-Harbi, N., Fritsch, D., Heinrich, K., Starannikova, L., Tokarev, A., and Yampolskii, Y. (2009). Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides, Macromolecules, 42, 7881–7888.
  • Gonciaruk, A., Althumayri, K., Harrison, W. J., Budd, P. M., and Siperstein, F. R. (2015). PIM-1/graphene composite: a combined experimental and molecular simulation study, Micropor. Mesopor. Mat., 209, 126–134.
  • Gong, H., Nguyen, T. H., Wang, R., and Bae, T. H. (2015). Separations of binary mixtures of CO2/CH4 and CO2/N2 with mixed-matrix membranes containing Zn(pyrz)2(SiF6) metal organic framework, J. Membr. Sci., 495, 169–175.
  • Hao, L., Li, P., and Chung, T. S. (2014a). PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide, J. Membr. Sci., 453, 614–623.
  • Hao, L., Zuo, J., and Chung, T. S. (2014b). Formation of defect-free polyetherimide/PIM-1 hollow fiber membranes for gas separation, AIChe J., 60(11), 3848–3858.
  • Hao, L., Liao, K. S., and Chung, T. S. (2015). Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance, J. Mater. Chem. A, 3, 17273–17281.
  • Huger, K., Schmeling, N., Jeazet, H. B. T., Janiak, C., Staudt, C., and Kleinermanns, K. (2012). Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation, Membranes, 2, 727–763.
  • Hutchinson, J. M. (1995). Physical aging of polymers, Prog. Polym. Sci., 20, 703–760.
  • Khan, M. M., Filiz, V., Bengtson, G., Shishatskiy, S., Rahman, M. M., and Abetz, V. (2012). Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation, Nanoscale Res. Lett., 7, 1–12.
  • Khan, M. M., Filiz, V., Bengtson, G., Shishatskiy, S., Rahman, M. M., Lillepaerg, J., and Abetz, V. (2013). Enhanced gas permeability by fabricating mixed matrix membranes of fuctionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM), J. Membr. Sci., 436, 109–120.
  • Khan, M. M., Filiz, V., Emmler, T., Abetz, V., Koschine, T., Ratzke, K., Faupel, F., Egger, W., and Ravelli, L. (2015). Free volume and gas permeation in anthracene maleimide-based polymers of intrinsic microporosity, Membranes, 5, 214–227.
  • Konnertz, N., Ding, Y., Harrison, W. J., Budd, P. M., Schonhals, A., and Bohning, M. (2016). Molecular mobility of the performance membrane polymer PIM-1 as investigated by dielectric spectroscopy, ACS Macro. Lett., 5, 528–532.
  • Koros, W. J., and Flemming, G. K. (1993). Membrane-based gas separation, J. Membr. Sci. 83, 1–80.
  • Lau, C. H., Konstas, K., Thornton, A. W., Liu, A. C. Y., Mudie, S., Kennedy, D. F., Howard, S. C., Hill, A. J., and Hill, M. R. (2015). Gas-separation membranes loaded with porous aromatic framework that improve with Age, Angew. Chem. Inst. Ed., 54, 2669–2653.
  • Li, N. N., Fane, A. G., Winston Ho, W. S., and Matsuura, T. (2008). Advanced Membrane Technology and Applications, John Wiley & Sons, Inc., New Jersey.
  • Li, F. Y., Xiao, Y., Chung, T. S., and Kawi, S. (2012). High-performance thermally self-cross linked polymer of intrinsic microporosity (PIM-1) membranes for energy development, Macromolecules, 45, 1427–1437.
  • Li, P., Chung, T. S., and Paul, D. R. (2013). Gas sorption and permeation on PIM-1, J. Membr. Sci., 432, 50–57.
  • Li, P., Chung, T. S., and Paul, D. R. (2014). Temperature dependence of gas sorption and permeation in PIM-1, J. Membr. Sci., 450, 380–388.
  • Liao, K. S., Lai, J. Y., and Chung, T. S. (2016). Metal ion modified PIM-1 and its application for propylene/propane separation, J. Membr. Sci., 515, 36–44.
  • Ma, X., Salinas, O., Litwiller, E., and Pinnau, I. (2014). Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides, Polym. Chem., 5, 6914–6922.
  • Mason, C. R., Maynard-Atem, L., Al-Harbi, N. M., Budd, P. M., Bernardo, P., Bazzarelli, F., Clarizia, G., and Jansen, J. C. (2011). Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties, Macromolecules, 44, 6471–6479.
  • Mason, C. R., Buonomenna, M. G., Golemme, G., Budd, P. M., Galiano, F., Figoli, A., Friess, K., and Hynek, V. (2013). New organophilic mixed matrix membranes derivated from a polymer of intrinsic microporosity and silicalite-1, Polymer, 54, 2222–2230.
  • Mason, C. R., Maynard-Atem, L., Heard, K. W. J., Satilmis, B., Budd, P. M., Friess, K., Lanc, M., Bernardo, P., Clarizia, G., and Jansen, J. C. (2014). Enhancement of CO2 affinity in a polymer of intrinsic microporosity by amine modification, Macromolecules, 47, 1021–1029.
  • McDermott, A. G., Budd, P. M., McKeown, N. B., Colina, C. M., and Runt, J. (2014). Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study, J. Mater. Chem. A, 2, 11742–11752.
  • McKeown, N. B., Gahnem, B., Msayib, K. J., Budd, P. M., Tattershall, C. E., Mahmood, K., Tan, S., Book, D., Langmi, H. W., and Walton, A. (2006). Towards polymers.based hydrogen storage materials: Engineering ultramicroporous cavities with in polymers of intrinsic microporosity, Angew. Chem. Int. Ed., 45, 1804–1807.
  • McKeown, N. B. (2012). Polymers of intrinsic microporosity, ISRN Mater. Sci., 2012, 1–16.
  • Mitra, T., Bhavsar, R. S., Adams, D. J., Budd, P. M., and Cooper, A. I. (2016). PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers, Chem. Commun., 52, 5581–5584.
  • Moore, T. T., Mahajan, R., Vu, D. Q., and Koros, W. J. (2004). Hybrid membrane materials comprising organic polymers with rigid dispersed phases, AIChE J., 50, 311–321.
  • Mulder, M. (2000). Phase Inversion Membranes, Academic Press, University of Twente, Enschede, The Netherlands.
  • Nasir, R., Mukhtar, H., Man, Z., and Mohshim, D. F. (2013). Material advancements in fabrication of mixed-matrix membranes, Chem. Eng. Technol., 36(5), 717–727.
  • Nik, O. G., Chen, X. Y., and Kaliaguine, S. (2012) Functionalized metal organic framework−polyimide mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci., 48, 413–414.
  • Rezakazemi, M., Amooghin, A. E., Montazer-Rahmati, M. M., Ismail, A. F., and Matsuura, T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions, Prog. Polym. Sci., 39, 817–861.
  • Robeson, L. M. (1991). Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62, 165–185.
  • Robeson, L. M. (2008). The upper bound revisited, J. Membr. Sci., 320, 390–400.
  • Rogan, Y., Starannikova, L., Ryzhikh, V., Yampolskii, Y., Bernardo, P., Bazarelli, F., Jansen, J. C., and McKeown, N. B. (2013). Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity, Polym. Chem., 4, 3813–3820.
  • Rose, I., Carta, M., Malpass-Evans, R., Ferrari, M. C., Bernardo, P., Clarizia, G., Jansen, J., and McKeown, N. B. (2015). Highly permeable benzotriptycene-based polymer of intrinsic microporosity, ACS Macro Lett., 4, 912–915.
  • Rowe, B. W., Freeman, B. D., and Paul, D. R. (2009). Physical aging of ultrathin glassy polymer films tracked by gas permeability, Polymer, 50, 5565–5575.
  • Rowsell, J. L. C., and Yaghi, O. M. (2004). Metal-organic frameworks: a new class of porous materials, Micropor. Mesopor. Mat., 73, 3–14.
  • Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGranth, J., Paul, D. R., and Freeman, B. D. (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: a review, Polymer, 54, 4729–4761.
  • Semino, R., Ramsahye, N. A., Ghoufi, A., and Maurin, G. (2015). Microscopic model of the Metal-Organic Framework/Polymer Interface: a first step toward understanding the compatibility in mixed matrix membranes, ACS Appl. Mater. Interfaces, 8, 809–819.
  • Seoane, B., Coronas, J., Gascon, I., Etxeberria Benavides, M., Karvan, O., Caro, J., Kapteijn, F., and Gascon, J. (2015). Metal-Organic Framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev., 44, 2421–2454.
  • Shamsipur, H., Dawood, B. A., Budd, P. M., Bernardo, P., Clarizia, G., and Jansen, J. C. (2014). Thermally rearrangeable PIM-polyimides for gas separation, Macromolecules, 47, 5595–5606.
  • Song, Q., Cao, S., Pritchard, R. H., Ghalei, B., Al-Muhtaseb, A. S., Terentjev, E. M., Cheetham, A. K., and Sivaniah, E. (2014). Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes, Nat. Commun., 5(4813), 1–12.
  • Smith, S. J. D., Ladewig, B. P., Hill, A. J., Lau, C. H., and Hill, M. R. (2015). Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes, Sci. Rep., 5(7823), 1–6.
  • Swaidan, R., Ghanem, B., Litwiller, E., and Pinnau, I. (2015). Physical aging, plasticization, their effects on gas permeation in “Rigid” polymers of intrinsic microporosity”, Macromolecules, 48, 6553–6561.
  • Tanh Jeazet, H. B., Staudt, C., and Janiak, C. (2012). Metal-organic frameworks in mixed matrix membranes for gas separation, Dalton Trans., 41, 13991–14212.
  • Tanh Jeazet, H. B., Koschine, T., Staudt, C., Raetzke, K., and Janiak C. (2013). Correlation of gas permeability in a Metal-Organic Framework MIL-101 (Cr) - Polysulfone mixed matrix membrane with free volume measurements by positron annihilation lifetime spectroscopy (PALS), Membranes, 3, 331–353.
  • Tian, Z., Wang, S., Wang, Y., Ma, X., Cao, K., Peng, D., Wu, X., and Jiang Z. (2016). Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity, J. Membr. Sci., 514, 15–24.
  • Vu, D. Q., Koros, W. J., and Miller S. J. (2003). Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results, J. Membr. Sci., 211, 311–334.
  • Wijmans, J. G., and Baker, R. W. (1995). The solution-diffusion model: a review, J. Membr. Sci., 107, 1–21
  • Wu, X. M., Zhang, Q. G., Lin, P. J., Qu, Y., Zhu, A. M., and Liu, Q. L. (2015). Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol, J. Membr. Sci., 493, 147–155.
  • Xu, R., Gao, Z., Chen, J., and Yan, W. (2007). From Zeolites to Porous MOF Materials, 170, Elsevier, Cambridge, UK.
  • Yampolskii, Y. P., Starannikova, L. E., and Belov, N. A. (2014). Hybrid gas separation polymeric membranes containing nanoparticles, Pet. Chem., 54(8), 637–651.
  • Yi, S., Ma, X., Pinnau, I., and Koros, W. J. (2015). A high-performance hydroxyl-functionalized polymer of intrinsic microporosity for an environmentally attractive membrane-based approach to decontamination of sour natural gas, J. Mater. Chem., 3, 22794–22806.
  • Yong, W. F., Li, F. Y., Xiao, Y. C., Li, P., Pramoda, K. P., Tong, Y. W., and Chung, T. S. (2012). Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. J. Membr. Sci., 407–408, 47–57.
  • Yong, W. F., Li, F. Y., Xiao, Y. C., Chung, T. S., and Tong, Y. W. (2013a). High-performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation, J. Membr. Sci., 443, 156–169.
  • Yong, W. F., Li, F. Y., Chung, T. S., and Tong, Y. W. (2013b). High permeable chemically PIM-1/Matrimid membranes for green hydrogen purification, J. Mater. Chem. A, 1, 13914–13925.
  • Wang, F., Liu, Z. S., Yang, H., Tan, Y. X., and Zhang, J. (2011). Hybrid Zeolite imidazolate frameworks with catalytically active TO4 building blocks, Angew. Chem. Int., 50, 450–453.
  • Zhao, H., Xie, Q., Ding, X., Chen, J., Hua, M., Tan, X., and Zhang, Y. (2016). High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation. J. Membr. Sci., 514, 305–312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.