470
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Study of the CO2 Absorber Performance Subjected to the Varying Amine Solvent and Flue Gas Loads

&

References

  • Aboudheir, A., Tontiwachwuthikul, P., Chakma, A., and Idem, R. (2003). Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions, Chem. Eng. Sci., 58, 5195–5210.
  • Artanto, Y., Jansen, J., Pearson, P., Do, T., Cottrell, A., Meuleman, E., and Feron, P. (2012). Performance of MEA and amine-blends in the CSIRO PCC pilot plant at Loy Yang Power in Australia, Fuel, 101, 264–275. doi:10.1016/j.fuel.2012.02.023
  • Asendrych, D., Niegodajew, P., and Drobniak, S. (2013). CFD Modelling of CO2 capture in a packed bed by chemical absorption, Chem. Process Eng., 34, 269–282. doi:10.2478/cpe-2013–0022
  • Billet, R. (1995). Packed Towers, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG.
  • Cheng, M.-D., Caparanga, A. R., Soriano, A. N., and Li, M.-H. (2010). Solubility of CO2 in the solvent system (water + monoethanolamine + triethanolamine), J. Chem. Thermodyn., 42, 342–347.
  • Chu, F., Yang, L., Du, X., and Yang, Y. (2016). CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: Modeling and optimization of the absorbing columns, Energy, 109, 495–505. doi:10.1016/j.energy.2016.04.123
  • Dinca, C., and Badea, A. (2013). The parameters optimization for a CFBC pilot plant experimental study of post-combustion CO2 capture by reactive absorption with MEA, Int. J. Greenh. Gas Control, 12, 269–279. doi:10.1016/j.ijggc.2012.11.006
  • Dugas, R., and Rochelle, G. (2009). Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine, Energy Procedia, 1, 1163–1169.
  • Fadli, T., Erriguible, A., Laugier, S., and Subra-Paternault, P. (2010). Simulation of heat and mass transfer of CO2–solvent mixtures in miscible conditions: Isothermal and non-isothermal mixing, J. Supercrit. Fluids, 52, 193–202.
  • Faiz, R., and Al-Marzouqi, M. (2009). Mathematical modelling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contractors, J. Memb. Sci., 324, 269–278. doi:10.1016/j.memsci.2009.06.050
  • Faramarzi, L., Kontogeorgis, G. M., Michelsen, M. L., Thomsen, K., and Stenby, E. H. (2010). Absorber model for CO2 capture by monoethanolamine, Ind. Eng. Chem. Res., 49, 3751–3759.
  • Fourati, M., Roig, V., and Raynal, L. (2012). Experimental study of liquid spreading in structured packings, Chem. Eng. Sci., 80, 1–15. doi:10.1016/j.ces.2012.05.031
  • Gáspár, J., and Cormoş, A.-M. (2011). Dynamic modeling and validation of absorber and desorber columns for post-combustion CO2 capture, Comput. Chem. Eng., 35, 2044–2052. doi:10.1016/j.compchemeng.2010.10.001
  • Iliuta, I., Larachi, F., Fourati, M., Raynal, L., and Roig, V. (2014). Flooding limit in countercurrent gas–liquid structured packed beds—Prediction from a linear stability analysis of an Eulerian two-fluid model, Chem. Eng. Sci., 120, 49–58.
  • Jayarathna, S., Lie, B., and Melaaen, M. C. (2013). Development of a dynamic model of a post combustion CO2 capture process, Energy Procedia, 37, 1760–1769.
  • Jiru, Y., and Eimer, D. A. (2013). A study of mass transfer kinetics of carbon dioxide in (monoethanolamine + water) by stirred cell, Energy Procedia, 37, 2180–2187.
  • Knudsen, J. N., Jensen, J. N., Vilhelmsen, P.-J., and Biede, O. (2009). Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents, Energy Procedia, 1, 783–790.
  • Kothandaraman, A. (2010). Carbon dioxide capture by chemical absorption: A solvent comparison study, PhD Thesis, Massachusetts Institute of Technology.
  • Krótki, A., Śpiewak, D., Więcław-Solny, L., Wilk, A., and Tatarczuk, A. (2014). The influence of gas and liquid flow rates on the CO2 absorption efficiency in 30% MEA solution (in Polish), Inżynieria i Apar. Chem., 53, 23–26.
  • Krótki, A., Więcław-Solny, L., Tatarczuk, A., Stec, M., Wilk, A., Śpiewak, D., and Spietz, T. (2016). Laboratory studies of post-combustion CO2 capture by absorption with MEA and AMP solvents, Arab. J. Sci. Eng., 41, 371–379. doi:10.1007/s13369-015-2008-z
  • Krótki, A., Więcław–Solny, L., Tatarczuk, A., Wilk, A., and Śpiewak, D. (2012). Laboratory studies of CO2 absorption with the use of 30% aqueous monoethanolamine solution, Arch. Combust., 12, 195–203.
  • Kvamsdal, H. M., Jakobsen, J. P., and Hoff, K. A. (2009). Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture, Chem. Eng. Process., 48, 135–144. doi:10.1016/j.cep.2008.03.002
  • Lawal, A., Wang, M., Stephenson, P., Koumpouras, G., and Yeung, H. (2010). Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants, Fuel, 89, 2791–2801.
  • Leung, D. Y. C., Caramanna, G., and Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy Rev., 39, 426–443.
  • Liu, Y., Fan, W., Wang, K., and Wang, J. (2016). Studies of CO2 absorption/regeneration performances of novel aqueous monothanlamine (MEA)-based solutions, J. Clean. Prod., 112, 4012–4021. doi:10.1016/j.jclepro.2015.08.116
  • Luo, X., Hartono, A., and Svendsen, H. F. (2012). Comparative kinetics of carbon dioxide absorption in unloaded aqueous monoethanolamine solutions using wetted wall and string of discs columns, Chem. Eng. Sci., 82, 31–43.
  • McCann, N., Maeder, M., and Hasse, H. (2011). Prediction of the overall enthalpy of CO2 absorption in aqueous amine systems from experimentally determined reaction enthalpies, Energy Procedia, 4, 1542–1549.
  • Mores, P., Rodríguez, N., Scenna, N., and Mussati, S. (2012). CO2 capture in power plants: Minimization of the investment and operating cost of the post-combustion process using MEA aqueous solution, Int. J. Greenh. Gas Control, 10, 148–163.
  • Mores, P., Scenna, N., and Mussati, S. (2011). Post-combustion CO2 capture process: Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution, Chem. Eng. Res. Des., 89, 1587–1599.
  • Nagy, T., and Mizsey, P. (2015). Model verification and analysis of the CO2-MEA absorber–desorber system, Int. J. Greenh. Gas Control, 39, 236–244. doi:10.1016/j.ijggc.2015.05.017
  • Niegodajew, P., and Asendrych, D. (2016). Amine based CO2 capture - CFD simulation of absorber performance, Appl. Math. Model., 40, 10222–10237. doi:10.1016/j.apm.2016.07.003
  • Niegodajew, P., Asendrych, D., and Drobniak, S. (2013a). Numerical modelling of CO2 desorption process coupled with phase transformation and heat transfer in CCS installation, J. Power Technol., 93, 354–362.
  • Niegodajew, P., Asendrych, D., and Drobniak, S. (2013b). Numerical analysis of CO2 capture efficiency in post combustion CCS technology in terms of varying flow conditions, Arch. Thermodyn., 34, 123–136.
  • Niegodajew, P., Asendrych, D., Marek, M., and Drobniak, S. (2014). Modelling liquid redistribution in a packed bed, J. Phys. Conf. Ser., 530. doi:10.1088/1742-6596/530/1/012053
  • Notz, R., Mangalapally, H. P., and Hasse, H. (2012). Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA, Int. J. Greenh. Gas Control, 6, 84–112. doi:10.1016/j.ijggc.2011.11.004
  • Pham, D. A., Lim, Y.-I., Jee, H., Ahn, E., and Jung, Y. (2015). Porous media Eulerian computational fluid dynamics (CFD) model of amine absorber with structured-packing for CO2 removal, Chem. Eng. Sci., 132, 259–270. doi:10.1016/j.ces.2015.04.009
  • Ranz, W. E., and Marshall, W. R. Jr. (1952a). Vaporation from drops, part I, Chem. Eng. Prog., 48, 141–146.
  • Ranz, W. E., and Marshall, W. R. Jr. (1952b). Vaporation from drops, part II, Chem. Eng. Prog., 48, 173–180.
  • Spigarelli, B. P., and Kawatra, S. K. (2013). Opportunities and challenges in carbon dioxide capture, J. CO2 Util., 1, 69–87.
  • Sreenivasulu, B., Gayatri, D. V., Sreedhar, I., and Raghavan, K. V. (2015). A journey into the process and engineering aspects of carbon capture technologies, Renew. Sustain. Energy Rev., 41, 1324–1350. doi:10.1016/j.rser.2014.09.029
  • Stec, M., Tatarczuk, A., Więcław-Solny, L., Krótki, A., Spietz, T., Wilk, A., and Piewak, D. (2016). Demonstration of a post-combustion carbon capture pilot plant using amine-based solvents at the Łaziska Power Plant in Poland, Clean Technol. Environ. Policy, 18, 151–160. doi:10.1007/s10098-015-1001-2
  • Śpiewak, D., Krótki, A., Spietz, T., Stec, M., Więcław–Solny, L., Tatarczuk, A., and Wilk, A. (2015). PDU-Scale Experimental Results of CO2 Removal With Amp/Pz Solvent, Chem. Process Eng., 36, 39–48. doi:10.1515/cpe-2015-0003
  • Tobiesen, F. A., Svendsen, H. F., and Juliussen, O. (2007). Experimental validation of a rigorous absorber model for CO2 postcombustion capture, AIChE J., 53, 846–865. doi:10.1002/aic
  • Vaidya, P. D., and Kenig, E. Y. (2007). CO2-Alkanolamine reaction kinetics: A review of recent studies, Chem. Eng. Technol., 30, 1467–1474. doi:10.1002/ceat.200700268
  • Versteeg, G. F., Van Dijck, L. A. J., and Van Swaaij, W. P. M. (1996). On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview, Chem. Eng. Commun., 144, 113–158.
  • Wang, M., Joel, A. S., Ramshaw, C., Eimer, D., and Musa, N. M. (2015). Process intensification for post-combustion CO2 capture with chemical absorption: A critical review, Appl. Energy, 158, 275–291. doi:10.1016/j.apenergy.2015.08.083
  • Wang, M., Lawal, A., Stephenson, P., Sidders, J., and Ramshaw, C. (2011). Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chem. Eng. Res. Des., 89, 1609–1624. doi:10.1016/j.cherd.2010.11.005
  • Weiland, R. H., Dingman, J. C., Cronin, D. B., and Browning, G. J. (1998). Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends, J. Chem. Eng. Data, 43, 378–382.
  • Wilk, A., Więcław-Solny, L., Śpiewak, D., Spietz, T., and Kierzkowska-Pawlak, H. (2015). A selection of amine sorbents for CO2 capture from flue gases, Chem. Process Eng., 36, 49–57. doi:10.1515/cpe-2015-0004
  • Xu, Y. Y., Yuan, J. Q., Repke, J.-U., and Wozny, G. (2012). CFD study on liquid flow behavior on inclined flat plate focusing on effect of flow rate, Eng. Appl. Comput. Fluid Mech., 6(2), 186–194.
  • Zhang, Y., and Chen, C.-C. (2013). Modeling CO2 absorption and desorption by aqueous monoethanolamine solution with aspen rate-based model, Energy Procedia, 37, 1584–1596. doi:10.1016/j.egypro.2013.06.034
  • Zhao, M., Minett, A., and Harris, A. T. (2013). A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2, Energy Environ. Sci., 6, 25–40. doi:10.1039/c2ee22890d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.