161
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Endeavor toward competitive electrochlorination by comparing the performance of easily affordable carbon electrodes with platinum

&

References

  • Badruzzaman, M., Oppenheimer, J., and Adham, S. (2009). Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes, J. Membr. Sci., 326(2), 392–399. doi:10.1016/j.memsci.2008.10.018
  • Bergmann, H., Lourtchouk, T., and Schops, K. (2002). New UV irradiation and direct electrolysis—Promising methods for water disinfection, Chem. Eng. J., 85(2), 111–117. doi:10.1016/S1385-8947(01)00188-7
  • Bergmann, M. E. H., and Koparal, A. S. (2005). Studies on electrochemical disinfectant production using anodes containing RuO2, J. Appl. Electrochem., 35, 121321–121329. doi:10.1007/s10800-006-9143-x
  • Breiter, M. W. (1963). Voltammetric study of halide ion adsorption on platinum in perchloric acid solutions, Electrochim. Acta, 8(12), 925–935. doi:10.1016/0013-4686(62)87047-9
  • Cao, H., Lu, D., Lin, J., Ye, Q., Wu, J., and Zheng, G. (2013). Novel Sb-doped ruthenium oxide electrode with ordered nanotube structure and its electrocatalytic activity towards chlorine evolution, Electrochim. Acta, 91, 234–239.
  • Casteel, M. J., and Sobsey, M. D. (2000). Inactivation of Cryptosporidium parvum oocysts and other microbes in water and wastewater by electrochemically generated mixed oxidants, Water Sci. Technol., 41(7), 127–134.
  • Chakrabarti, M. H. (2012). On site electrochemical production of sodium hypochlorite disinfectant for a power plant utilizing seawater, Int. J. Electrochem. Sci., 7, 3929–3938.
  • Chen, S., Hu, W., Hong, J., and Sandoe, S. (2016). Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode, Mar. Pollut. Bull., 105(1), 319–323.
  • Cho, V., Choi, V., Kim, I. S., and Amy, G. (2001). Chemical aspects and by-products of electrolyser, Water Sci. Technol. Water Supply, 1(4), 159–167.
  • Drees, K. P., Abbaszadegan, M., and Maier, R. M. (2003). Comparative electrochemical inactivation of bacteria and bacteriophage, Water Res., 37(10), 2291–2300. doi:10.1016/S0043-1354(03)00009-5
  • Drogui, P., Elmaleh, S., Rumeau, M., and Bernard, C. (2001). Oxidizing and disinfecting by hydrogen peroxide produced in a two-electrode cell, Water Res., 35(13), 3235–3241. doi:10.1016/S0043-1354(01)00021-5
  • Dukovic, J., and Tobias, C. W. (1987). The Influence of attached bubbles on potential drop and current distribution at gas‐evolving electrode, J. Electrochem. Soc., 134(2), 331–343. doi:10.1149/1.2100456
  • Faita, G., and Fiori, G. (1972). Anodic discharge of chloride ions on oxide electrodes, J. Appl. Electrochem., 2(1), 31–35. doi:10.1007/BF00615189
  • Feng, C., Suzuki, K., Zhao, S., Sugiura, N., and Shimada, S. (2004). Water disinfection by electrochemical treatment, Bioresour. Technol., 94(1), 21–25. doi:10.1016/j.biortech.2003.11.021
  • Fernández-Ibáñez, P., Polo-Lopez, M. I., Malato, S., Wadhwa, S., Hamilton, J. W. J., Dunlop, P. S. M., D’Sa, R., Magee, E., O’Shea, K., and Dionysiou, D. D. (2015). Solar photocatalytic disinfection of water using titanium dioxide graphene composites, Chem. Eng. J., 261, 36–44.
  • Goswami, K. N., and Staehle, R. W. (1971). Growth kinetics of passive films on Fe, FeNi, FeCr, FeCrNi alloys, Electrochim. Acta, 16(11), 1895–1907. doi:10.1016/0013-4686(71)85145-9
  • Ghernaout, D., and Ghernaout, B. (2010). From chemical disinfection to electrodisinfection: The obligatory itinerary? Desalin. Water Treat., 16(1–3), 156–175.
  • Ghernaout, D., Naceur, M. W., and Aouabed, A. (2011). On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment, Desalination, 270(1), 9–22.
  • Grebenyuk, V. D., Korchak, G. I., Sobolevskaya, T. T., Konovalova, I. D., and Aksilenko, N. D. (1990). Electrochemical disinfection of water, Soviet J. Water Chem. Technol., 12(1), 107–110.
  • Griessler, M., Knetsch, S., Schimpf, E., Schmidhuber, A., and Schrammel, B. (2011). Inactivation of Pseudomonas aeruginosa in electrochemical advanced oxidation process with diamond electrodes, Water Sci. Technol., 63(9), 2010–2016.
  • Haaken, D., Dittmar, T., Schmalz, V., and Worch, E. (2012). Influence of operating conditions and wastewater-specific parameters on the electrochemical bulk disinfection of biologically treated sewage at boron-doped diamond (BDD) electrodes, Desalin. Water Treat., 46(1–3), 160–167.
  • Hansen, H. A., Man, I. C., Studt, F., Abild-Pedersen, F., Bligaard, T., and Rossmeisl, J. (2010). Electrochemical chlorine evolution at rutile oxide (1 1 0) surfaces, Phys. Chem., 12, 283–290.
  • Hayfield, P. C. S. (1998). Development of the noble metal/oxide coated titanium electrode, Platinum Met. Rev., 42(1), 27–33.
  • Jeong, J., Kim, C., and Yoon, J. (2009). The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes, Water Res., 43(4), 895–901. doi:10.1149/1.2100456
  • Jeong, J., Kim, J. Y., Cho, M., Choi, W., and Yoon, J. (2007). Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode, Chemosphere, 67(4), 652–659. doi:10.1016/j.chemosphere.2006.11.035
  • Kerwick, M. I., Reddy, S. M., Chamberlain, A. H. L., Holt, D. M. (2005). Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochim. Acta, 50(25), 5270–5277. doi:10.1016/j.electacta.2005.02.074
  • Khelifa, A., Moulay, S., Hannane, F., and Benslimene, S. (2004). Application of an experimental design method to study the performance of electrochlorination cells, Desalination, 160(1), 91–98. doi:10.1016/S0011-9164(04)90021-5
  • Kodera, F., Umeda, M., and Yamada, A. (2005). Determination of free chlorine based on anodic voltammetry using platinum, gold, and glassy carbon electrodes, Anal. Chim. Acta, 537, 293–298.
  • Kraft, A. (2007). Doped diamond: A compact review on a new, versatile electrode material, Int. J. Electrochem. Sci., 2(5), 355–385.
  • Kraft, A., Blaschke, M., Kreysig, D., and Sandt, B. (1999a). Electrochemical water disinfection. Part II: Hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits, J. Appl. Electrochem., 29(8), 895–902. doi:10.1023/A:1003654305490
  • Kraft, A., Stadelmann, M., Blaschke, M., and Kreysig, D. (1999b). Electrochemical water disinfection. Part I: Hypochlorite production from very dilute chloride solutions, J. Appl. Electrochem., 29(7), 859–866. doi:10.1023/A:1003650220511
  • Kristiana, I., Gallard, H., Joll, C., and Croue, J. P. (2009). The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates, Water Res., 43(17), 4177–4186. doi:10.1016/j.watres.2009.06.044
  • Kuhn, A. T., and Wright, P. M. (1973). The behaviour of platinum, iridium and ruthenium electrodes in strong chloride solutions, J. Electroanal. Chem. Interfacial. Electrochem., 41(3), 329–349. doi:10.1016/S0022-0728(73)80412-7
  • Levich, V. G., and Tobias, C. W. (1963). Physicochemical hydrodynamics, J. Electrochem. Soc., 110(11), 251C–252C.
  • March, J. G., and Simonet, B. M. (2007). A green method for the determination of hypochlorite in bleaching products based on its native absorbance, Talanta, 73(2), 232–236. doi:10.1016/j.talanta.2007.03.027
  • Martínez‐Huitle, C. A., and Brillas, E. (2008). Electrochemical alternatives for drinking water disinfection, Angew. Chem. Int. Ed., 47(11), 1998–2005.
  • Matsunaga, T., Nakasono, S., and Kitajima, Y. (1994). Electrochemical disinfection of bacteria in drinking water using activated carbon fibers, Biotechnol. Bioeng., 43(5), 429–433. doi:10.1002/bit.260430511
  • Matsunaga, T., Nakasono, S., and Takamuku, T. (1992). Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes, Appl. Environ. Microbiol., 58(2), 686–689.
  • Matsunaga, T., Namba, Y., and Nakajima, T. (1984). 751—Electrochemical sterilization of microbial cells, Bioelectrochem. Bioenerg., 13(4), 393–400. doi:10.1016/0302-4598(84)87040-3
  • Matsunaga, T., Okochi, M., Takahashi, M., and Nakayama, T. (2000). TiN electrode reactor for disinfection of drinking water, Water Res., 34(12), 3117–3122. doi:10.1016/S0043-1354(00)00066-X
  • Mills, D. (2000). A new process for electrocoagulation, Am. Water Works ASSN. J., 92(6), 34.
  • Murata, M., Ivandini, T. A., Shibata, M., Nomura, S., Fujishima, A., and Einaga, Y. (2008). Electrochemical detection of free chlorine at highly boron-doped diamond electrodes, J. Electroanal. Chem., 612, 29–36.
  • Nakayama, T., Wake, V., and Ozawa, K. (1998). Use of a titanium nitride for electrochemical inactivation of marine bacteria, Environ. Sci. Technol., 32(6), 798–801. doi:10.1021/es970578h
  • Newman, J. (1966). Current distribution on a rotating disk below the limiting current, J. Electrochem. Soc., 113(12), 1235–1241. doi:10.1149/1.2423795
  • Okochi, M., Nakamura, N., and Matsunaga, T. (1999). Electrochemical killing of micro-organisms using the oxidised form of ferrocenemonocarboxylic acid, Electrochim. Acta, 44(21), 3795–3799. doi:10.1016/S0013-4686(99)00085-7
  • Okochi, M., Nakamura, N., and Matsunaga, T. (2000). Electrochemical killing of Vibrio alginolyticus using ferrocene-modified electrode, Electrochim. Acta, 45(18), 2917–2921. doi:10.1016/S0013-4686(00)00368-6
  • Patermarakis, G., and Fountoukidis, E. (1990). Disinfection of water by electrochemical treatment, Water Res., 24(12), 1491–1496. doi:10.1016/0043-1354(90)90083-I
  • Patil, R. S., Juvekar, V. A., and Naik, V. M. (2011). Oxidation of chloride ion on platinum electrode: Dynamics of electrode passivation and its effect on oxidation kinetics, Ind. Eng. Chem. Res., 50(23), 12946–12959. doi:10.1021/ie200663a
  • Patil, R. S., Juvekar, V. A., and Naik, V. M. (2014). A polarity switching technique for the efficient production of sodium hypochlorite from aqueous sodium chloride using platinum electrodes, Ind. Eng. Chem. Res., 53(50), 19426–19437. doi:10.1021/ie503084m
  • Qin, G. F., Li, Z. Y., Chen, X. D., Russell, A. B. (2002). An experimental study of a NaClO generator for anti-microbial applications in the food industry, J. Food Eng., 54(2), 111–118. doi:10.1016/S0260-8774(01)00191-1
  • Rajab, M., Heim, C., Letzel, T., Drewes, J. E., and Helmreich, B. (2015). Electrochemical disinfection using boron-doped diamond electrode—The synergetic effects of in situ ozone and free chlorine generation, Chemosphere, 121, 47–53.
  • Rajeshwar, K., and Ibanez, J. G. (1997). Environmental Electrochemistry: Fundamentals and Applications in Pollution Sensors and Abatement. Academic Press.
  • Randtke, J. S. (2010). White’s Handbook of Chlorination and Alternative Disinfectants. Black & Veatch Corporation (Ed.), Wiley, NJ.
  • Shih, Y. J., Su, C. C., and Huang, C. P. (2015). The synthesis, characterization, and application of a platinum modified graphite electrode (Pt/G) exemplified by chloride oxidation, Sep. Purif. Technol., 156, 961–971. doi:10.1016/j.seppur.2015.09.045
  • Shih, Y. J., Su, C. C., Lu, M. C., and Huang, C. P. (2016). The electrodeless preparation of M (M˭Pt, Pd, Ru, Cu) Ni-Co-oxide/graphite electrodes for the electrochemical inactivation of Escherichia coli, Sustain. Environ. Res., 26, 1–13.
  • Smith, W., and Leslie, S. (2006). Reversible Polarity Electrode System. Int. Patent WO/058369 A1.
  • Song, S., Liang, Y., Li, Z., Wang, Y., Fu, R., Wu, D., and Tsiakaras, P. (2010). Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions, Appl. Catal. B Environ., 98, 132–137.
  • Springthorpe, S., and Sattar, S. (2002). A dynamic reactor to study disinfection of drinking water, Am. Water Works ASSN. ISBN 1583211780, 9781583211786.
  • Stoner, G. E., Cahen, G. L., Sachyani, M., and Gileadi, E. (1982). The mechanism of low frequency ac electrochemical disinfection, Bioelectrochem. Bioenerg., 9(3), 229–243. doi:10.1016/0302-4598(82)80013-5
  • Tilak, B. V. (1979). Kinetics of chlorine evolution—A comparative study, J. Electrochem. Soc., 126(8), 1343–1348. doi:10.1149/1.2129274
  • Trussell, R. R. (1998). Overview of disinfectant residuals in drinking water distribution systems, Water Supply, 16, 1–15.
  • Venczel, L. V., Arrowood, M., and Hard, M. (1997). Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine, Appl. Environ. Microbiol., 63(4), 1598–1601.
  • Yi, L., Liu, L., Liu, X., Wang, X., Yi, W., He, P., and Wang, X. (2012). Carbon-supported Pt–Co nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cell: Electrocatalysis and fuel cell performance, Int. J. Hydrogen Energy, 37, 12650–12658.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.