200
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Acid-treated bentonite-supported Ni catalysts via rapid microwave-assisted drying for nitrobenzene hydrogenation

, , ORCID Icon &

References

  • Baum, E. J. (1998). Chemical Property Estimation: Theory and Application, Lewis Publishers, Boca Raton, p. 3.
  • Bond, G., Moyes, R. B., and Whan, D. A. (1993). Recent applications of microwave heating in catalysis, Catal. Today, 17, 427–437.
  • Carriazo, J. G., Martínez, L. M., Odriozola, J. A., Moreno, S., Molina, R., and Centeno, M. A. (2007). Gold supported on Fe, Ce, and Al pillared bentonites for CO oxidation reaction, Appl. Catal. B, 72, 157–165.
  • Chary, K. V. R., and Srikanth, C. S. (2009). Selective hydrogenation of nitrobenzene to aniline over Ru/SBA-15 catalysts, Catal. Lett., 128, 164–170.
  • de Oliveira, A. D. N., da Silva Costa, L. R., de Oliveira Pires, L. H., do Nascimento, L. A. S., Angélica, R. S., da Costa, C. E. F., Zamian, J. R., and da Rocha Filho, G. N. (2013). Microwave-assisted preparation of a new esterification catalyst from wasted flint kaolin, Fuel, 103, 626–631.
  • Fang, X., Yao, S., Qing, Z., and Li, F. (1997). Study on silica supported Cu-Cr-Mo nitrobenzene hydrogenation catalysts, Appl. Catal. A, 161, 129–135.
  • Gao, J., Jia, C., Li, J., Gu, F., Xu, G., Zhong, Z., and Su, F. (2012). Nickel catalysts supported on barium hexaaluminate for enhanced CO methanation, Ind. Eng. Chem. Res., 51, 10345–10353.
  • Gao, Y., Ma, D., Wang, C., Guan, J., and Bao, X. (2011). Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature, Chem. Commun., 47, 2432–2434.
  • Gebert, A., Roth, S., Oswald, S., and Schultz, L. (2009). Passivity of polycrystalline NiMnGa alloys for magnetic shape memory applications, Corros. Sci., 51, 1163–1171.
  • Geyer, R., Hunold, J., Keck, M., Kraak, P., Pachulski, A., and Schödel, R. (2012). Methods for determining the metal crystallite size of Ni supported catalysts, Chem. Ing. Technol., 84, 160–164.
  • He, L., Huang, Y., Wang, A., Liu, Y., Liu, X., Chen, X., Delgado, J. J., Wang, X., and Zhang, T. (2013). Surface modification of Ni/Al2O3 with Pt: Highly efficient catalysts for H2 generation via selective decomposition of hydrous hydrazine, J. Catal., 298, 1–9.
  • Hosseini-Sarvari, M., and Razmi, Z. (2015). Direct hydrogenation and one-pot reductive amidation of nitro compounds over Pd/ZnO nanoparticles as a recyclable and heterogeneous catalyst, Appl. Surf. Sci., 324, 265–274.
  • Huang, Y., Chen, X., Deng, Y., Zhou, D., and Wang, L. (2015). A novel nickel catalyst derived from layered double hydroxides (LDHs) supported on fluid catalytic cracking catalyst residue (FC3 R) for rosin hydrogenation, Chem. Eng. J., 269, 434–443.
  • Jayabal, S., and Ramaraj, R. (2014). Bimetallic Au/Ag nanorods embedded in functionalized silicate sol–gel matrix as an efficient catalyst for nitrobenzene reduction, Appl. Catal. A, 470, 369–375.
  • Jeenpadiphat, S., and Tungasmita, D. N. (2013). Acid-activated pillar bentonite as a novel catalyst for the esterification of high FFA oil, Powder Technol., 237, 634–640.
  • Jiang, Y., Li, X., Qin, Z., and Ji, H. (2016). Preparation of Ni/bentonite catalyst and its applications in the catalytic hydrogenation of nitrobenzene to aniline, Chin. J. Chem. Eng., 24, 1195–1200.
  • Kaichev, V. V., Gladky, A. Y., Prosvirin, I. P., Saraev, A. A., Hävecker, M., Knop-Gericke, A., Schlögl, R., and Bukhtiyarov, V. I. (2013). In situ XPS study of self-sustained oscillations in catalytic oxidation of propane over nickel, Surf. Sci., 609, 113–118.
  • Klemm, E., Amon, B., Redlingshöfer, H., Dieterich, E., and Emig, G. (2001). Deactivation kinetics in the hydrogenation of nitrobenzene to aniline on the basis of a coke formation kinetics—Investigations in an isothermal catalytic wall reactor, Chem. Eng. Sci., 56, 1347–1353.
  • Li, D., Zeng, L., Li, X., Wang, X., Ma, H., Assabumrungrat, S., and Gong, J. (2015). Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation, Appl. Catal. B, 176–177, 532–541.
  • Li, H., Zhao, Y., Gao, C., Wang, Y., Sun, Z., and Liang, X. (2012). Study on deactivation of Ni/Al2O3 catalyst for liquid phase hydrogenation of crude 1,4-butanediol aqueous solution, Chem. Eng. J., 181–182, 501–507.
  • Liu, Y., Lu, Y., Liu, S., and Yin, Y. (1999). The effects of microwaves on the catalyst preparation and the oxidation of o-xylene over a V2O5/SiO2 system, Catal. Today, 51, 147–151.
  • Liu, Z., Qin, Z., Zhang, J., and Wang, Y. (2012). Hydrogenation of nitrobenzene to aniline on amorphous Ni–Mo–P catalysts and mechanism of catalyst deactivation, CIESC J., 63, 121–126.
  • Louloudi, A., and Papayannakos, N. (2016). Performance of Ni/Si-pillared clay catalytic extrudates for benzene hydrogenation reaction, Appl. Clay Sci., 123, 47–55.
  • Lu, H., Yang, X., Gao, G., Wang, K., Shi, Q., Wang, J., Han, C., Liu, J., Tong, M., Liang, X., and Li, C. (2014). Mesoporous zirconia-modified clays supported nickel catalysts for CO and CO2 methanation, Int. J. Hydrogen Energy, 39, 18894–18907.
  • Lu, X., Gu, F., Liu, Q., Gao, J., Liu, Y., Li, H., Jia, L., Xu, G., Zhong, Z., and Su, F. (2015). VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation, Fuel Process. Technol., 135, 34–46.
  • Mile, B., Stirling, D., Zammitt, M. A., Lovell, A., and Webb, M. (1990). TPR studies of the effects of preparation conditions on supported nickel catalysts, J. Mol. Catal., 62, 179–198.
  • Mohan, V., Pramod, C. V., Suresh, M., Prasad Reddy, K. H., Raju, B. D., and Rama Rao, K. S. (2012). Advantage of Ni/SBA-15 catalyst over Ni/MgO catalyst in terms of catalyst stability due to release of water during nitrobenzene hydrogenation to aniline, Catal. Commun., 18, 89–92.
  • Nieto-Márquez, A., Gil, S., Romero, A., Valverde, J. L., Gómez-Quero, S., and Keane, M. A. (2009). Gas phase hydrogenation of nitrobenzene over acid treated structured and amorphous carbon supported Ni catalysts, Appl. Catal. A, 363, 188–198.
  • Önal, M., and Sarıkaya, Y. (2007). Preparation and characterization of acid-activated bentonite powders, Powder Technol., 172, 14–18.
  • Qin, Z.-z., Liu, Z.-l., and Wang, Y.-h. (2014). Promotion effect of Mo in amorphous Ni–P Catalyst for the liquid-phase nitrobenzene catalytic hydrogenation to aniline, Chem. Eng. Commun., 201, 338–351.
  • Qiu, K., Song, J., Song, H., Gao, X., Luo, Z., and Cen, K. (2015). A novel method of microwave heating mixed liquid-assisted regeneration of V2O5–WO3/TiO2 commercial SCR catalysts, Environ. Geochem. Health, 37, 905–914.
  • Quirino, M. R., Oliveira, M. J. C., Keyson, D., Lucena, G. L., Oliveira, J. B. L., and Gama, L. (2016). Synthesis of zinc aluminate with high surface area by microwave hydrothermal method applied in the transesterification of soybean oil (biodiesel), Mater. Res. Bull., 74, 124–128.
  • Roulia, M. (2005). Synthesis and characterization of novel chromium pillared clays, Mater. Chem. Phys., 91, 281–288.
  • Sangeetha, P., Seetharamulu, P., Shanthi, K., Narayanan, S., and Rama Rao, K. S. (2007). Studies on Mg–Al oxide hydrotalcite supported Pd catalysts for vapor phase hydrogenation of nitrobenzene, J. Mol. Catal. A Chem., 273, 244–249.
  • Sangeetha, P., Shanthi, K., Rao, K. S. R., Viswanathan, B., and Selvam, P. (2009). Hydrogenation of nitrobenzene over palladium-supported catalysts—Effect of support, Appl. Catal. A, 353, 160–165.
  • Scherrer, P. (1918). Bestimmung der grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen, Nachrichten Gesellschaft Wissenschaft Gottingen, 26, 98–100.
  • Sharma, S., Ganguly, A., Papakonstantinou, P., Miao, X., Li, M., Hutchison, J. L., Delichatsios, M., and Ukleja, S. (2010). Rapid microwave synthesis of CO Tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol, J. Phys. Chem. C, 114, 19459–19466.
  • Soetaredjo, F. E., Ayucitra, A., Ismadji, S., and Maukar, A. L. (2011). KOH/bentonite catalysts for transesterification of palm oil to biodiesel, Appl. Clay Sci., 53, 341–346.
  • Spinner, N., and Mustain, W. E. (2011). Effect of nickel oxide synthesis conditions on its physical properties and electrocatalytic oxidation of methanol, Electrochim. Acta, 56, 5656–5666.
  • Varkolu, M., Velpula, V., Pochamoni, R., Muppala, A. R., Burri, D. R., and Kamaraju, S. R. R. (2016). Nitrobenzene hydrogenation over Ni/TiO2 catalyst in vapour phase at atmospheric pressure: influence of preparation method, Appl. Petrochem. Res., 6, 15–23.
  • Velu, S., and Gangwal, S. K. (2006). Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption, Solid State Ionics, 177, 803–811.
  • Wang, M., Liu, W., and Huang, C. (2009). Investigation of PdNiO/C catalyst for methanol electrooxidation, Int. J. Hydrogen Energy, 34, 2758–2764.
  • Wen, X., Li, R., Yang, Y., Chen, J., and Zhang, F. (2013). An egg-shell type Ni/Al2O3 catalyst derived from layered double hydroxides precursor for selective hydrogenation of pyrolysis gasoline, Appl. Catal. A, 468, 204–215.
  • Wittanadecha, W., Laosiripojana, N., Ketcong, A., Ningnuek, N., Praserthdam, P., Monnier, J. R., and Assabumrungrat, S. (2014). Development of Au/C catalysts by the microwave-assisted method for the selective hydrochlorination of acetylene, React. Kinet. Mech. Catal., 112, 189–198.
  • Wu, S., Wen, G., Wang, J., Rong, J., Zong, B., Schlogl, R., and Su, D. S. (2014). Nitrobenzene reduction catalyzed by carbon: does the reaction really belong to carbocatalysis?, Catal. Sci. Technol., 4, 4183–4187.
  • Xu, J., Chen, L., Tan, K. F., Borgna, A., and Saeys, M. (2009). Effect of boron on the stability of Ni catalysts during steam methane reforming, J. Catal., 261, 158–165.
  • Yu, D., Zhu, M., Utigard, T. A., and Barati, M. (2014). TG/DTA study on the carbon monoxide and graphite thermal reduction of a high-grade iron nickel oxide residue with the presence of siliceous gangue, Thermochim. Acta, 575, 1–11.
  • Zhang, R., Guo, G., Gao, Y., Wang, L., Zhang, N., and Cai, J. (2013). Compared study on the bentonite supported nickel based catalysts materials, Mater. Lett., 113, 146–148.
  • Zhang, M., Mu, S., Guan, Q., Li, W., and Du, J. (2015a). A high anticorrosive chromium-free conversion coating prepared with an alkaline conversion bath on electroless Ni–P coating, Appl. Surf. Sci., 349, 108–115.
  • Zhang, S., and Yang, J. (2015b). Microwave-assisted synthesis of BiOCl/BiOBr composites with improved visible-light photocatalytic activity, Ind. Eng. Chem. Res., 54, 9913–9919.
  • Zhao, D., Shi, M. Q., Liu, W. M., Chu, Y. Q., and Ma, C. A. (2014). Special microwave-assisted one-pot synthesis of low loading Pt-Ru alloy nanoparticles on reduced graphene oxide for methanol oxidation, Micro Nano Letters, IET, 9, 50–54.
  • Zhao, L., Chen, J., and Zhang, J. (2006). Deactivation of Ni/K2O–La2O3–SiO2 catalyst in hydrogenation of m-dinitrobenzene to m-phenylenediamine, J. Mol. Catal. A Chem., 246, 140–145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.