411
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Effect of metal ions on dark fermentative biohydrogen production using suspended and immobilized cells of mixed bacteria

&

References

  • Alshiyab, H., Kalil, M. S., Hamid, A. A., and Yusof, W. W. M. (2008). Effect of salts addition on hydrogen production by C. acetobutylicum, Pak. J. Biol. Sci., 11, 2193–2200.
  • APHA (1998). Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, DC.
  • Argun, H., Kargi, F., and Kapdan, I. K. (2008). Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentration, Int. J. Hydrogen Energy, 33(24), 7405–7412.
  • Bao, M. D., Su, H. J., and Tan, T. W. (2013). Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine, Fuel, 112, 38–44.
  • Bard, R. C., and Gunsalus, I. C. (1950). Glucose metabolism of Clostridium perfringens: existence of a metallo-aldolase, J. Bacteriol., 59, 387–400.
  • Boni, M. R., Sbaffoni, S., and Tuccinardi, L. (2014). The influence of iron concentration on biohydrogen production from organic waste via anaerobic fermentation, Environ. Technol., 32(23), 3000–3010.
  • Brown, S. D., Begemann, M. B., and Mormile, M. R. (2011). Complete genome sequence of the haloalkaliphilic, hydrogen-producing bacterium Halanaerobium hydrogeniformans, J. Bacteriol., 193, 3682–3683.
  • Calusinska, M., Hamilton, C., Monsieurs, P., Mathy, G., Leys, N., Franck, F., Joris, B., Philippe, T., Hiligsmann, S., and Wilmotte A. (2015). Genome-wide transcriptional analysis suggests hydrogenase- and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009, Biotechnol. Biofuels, 8, 27.
  • Chang, F. Y., and Lin, C. Y. (2006). Calcium effect of fermentative hydrogen production in an anaerobic up-flow sludge blanket system, Water Sci. Technol., 54, 105–119.
  • Chen, C. Y., Yang, M. H., Yeh, K. L., Liu, C. H., and Chang, J. S. (2008). Biohydrogen production using sequential two-stage dark and photo fermentation processes, Int. J. Hydrogen Energy, 33, 4755–4762.
  • Chong, M. L., Rahman, A. N., Yee, P. L., Aziz, A. S., Rahim, A. R., and Shirai, Y. (2009). Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6, Int. J. Hydrogen Energy, 34, 8859–8865.
  • Das, D., and Veziroglu, T. N. (2001). Hydrogen production by biological processes: A survey of literature, Int. J. Hydrogen Energy, 26, 13–28.
  • Ding, J., Ren, N. Q., Liu, M., and Ding, L. (2004). Effect of Fe and Fe2+ on hydrogen production capacity with mixed culture, Environ. Sci. Technol., 25, 48–53.
  • Duran-Padilla, V. R., Davila-Vazquez, G., Chávez-Vela, N. A., Tinoco-Valencia, J. R., and Jáuregui-Rincón, J. (2014). Iron effect on the fermentative metabolism of Clostridium acetobutylicum ATCC 824 using cheese whey as substrate, Biofuel Res., 4, 129–133.
  • Eroglu, E., Gunduz, U., Yucel, M., and Eroglu, I. (2009). Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock, Int. J. Hydrogen Energy, 35(11), 5293–5300.
  • Faloye, F. D., Gueguim Kana, E. B., and Schmidt, S. (2014). Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique – Semi pilot scale production assessment, Int. J. Hydrogen Energy, 39(11), 5607–5616.
  • Faloye, F. D., Gueguim Kana, E. B., and Schmidt, S. (2013). Optimization of hybrid inoculum development techniques for biohydrogen production and preliminary scale up, Int. J. Hydrogen Energy, 38(27), 11765–11775.
  • Gadhe, A., Sonawane, S. S., and Varma, M. N. (2014). Ultrasonic pretreatment for an enhancement of biohydrogen production from complex food waste, Int. J. Hydrogen Energy, 39(15), 7721–7729.
  • Garcin, E., Vernede, X., Hatchikian, E. C., Volbeda, A., and Fontecilla-Camps, J. C. (1999). The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center, Structure, 7, 557–566.
  • Guarnieri, M. T., Nag, A., Smolinski, S. L., Darzins, A. L., Seibert, M., and Pienkos, P. T. (2011). Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga, PLoS One, 6, 25851.
  • Gueguim Kana, E. B., Schmidt, S., and Azanfack Kenfack, R. H. (2013). A web-enabled software for real-time biogas fermentation monitoring – Assessment of dark fermentations for correlations between medium conductivity and biohydrogen evolution, Int. J. Hydrogen Energy, 38(25), 10235–10244.
  • Karadag, D., and Puhakka, J. A. (2008). Enhancement of anaerobic hydrogen production by iron and nickel, Int. J. Hydrogen Energy, 35, 8554–8560.
  • Khanna, N., Ghosh, A. K., and Huntemann, M. (2013). Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production, Stand. Genomic Sci., 9, 359–369.
  • Kisielewska, M., Wysocka, I., and Rynkiewicz, M. R. (2013). Continuous biohydrogen and biomethane production from whey permeate in a two-stage fermentation process, Environ. Progress Sustainable Energy, 33, 4111–1418.
  • Kourkoutas, Y., Bekatorou, A., Banat, I. M., and Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: A review, Food Microbiol., 21, 377–397.
  • Lee, D. Y., Li, Y. Y., Oh, Y. K., Kim, M. S., and Noike, T. (2009). Effect of iron concentration on continuous H2 production using membrane bioreactor, Int. J. Hydrogen Energy, 34, 1244–1252.
  • Lee, Y. J., Miyahara, T., and Noike, T. (2001). Effect of iron concentration on hydrogen fermentation, Bioresour. Technol., 80, 227–231.
  • Li, M., Xia, T., Zhu, C., Xi, B., Jia, X., Wei, Z., and Zhu, J. (2014). Effect of short-time hydrothermal pretreatment of kitchen waste on biohydrogen production: Fluorescence spectroscopy coupled with parallel factor analysis, Bioresour. Technol., 172, 382–390.
  • Lin, C., and Lay, C. (2005). A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge, Int. J. Hydrogen Energy, 30, 285–292.
  • Lin, C. N., Wu, S. Y., and Chang, J. S. (2006). Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge, Int. J. Hydrogen Energy, 31(15), 2200–2210.
  • Lin, C. Y., and Shei, S. H. (2008). Heavy metal effects on fermentative hydrogen production using natural mixed microflora, Int. J. Hydrogen Energy, 33, 587–593.
  • Liu, G., and Shen, J. (2004). Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria, J. Biosci. Bioeng., 98, 251–256.
  • Mohanakrishna, G., Venkata Mohan, S., and Sarma, P. N. (2010). Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: An integrative approach, Int. J. Hydrogen Energy, 35, 3440–3449.
  • Neidhardt, F. C. (1996). Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, ASM Press, Washington, DC.
  • Paul, J. S., Quraishi, A., Thakur, V., and Jadhar, S. K. (2014). Effect of ferrous and nitrate ions on biological hydrogen production from dairy effluent with anaerobic waste water treatment process, Asian J. Biol., 7, 167–171.
  • Penniston, J., and Gueguim Kana, E. B. (2016). Impact of culture pH regulation on biohydrogen production using suspended and immobilized microbial cells, Preprints, 2016110042 (doi: 10.20944/preprints201611.0042.v1).
  • Ramprakash, B., and Muthukumar, K. (2015). Comparative study on the performance of various pretreatment and hydrolysis methods for the production of biohydrogen using Enterobacter aerogenes RM 08 from rice mill wastewater, Int. J. Hydrogen Energy, 40(30), 9106–9112.
  • Rismani-Yazdi, H., Haznedaroglu, B. Z., Hsin, C., and Peccia, J. (2012). Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation, Biotechnol. Biofuels, 5, 74.
  • Rorke, D., and Gueguim Kana, E. B. (2016). Biohydrogen process development on waste sorghum (Sorghum bicolor) leaves: Optimization of saccharification, hydrogen production and preliminary scale up, Int. J. Hydrogen Energy, 41(30), 12941–12952.
  • Sawers, G. (1994). The hydrogenases and formate dehydrogenases of Escherichia coli, Antonie Van Leeuwenhoek, 66, 57–88.
  • Sekoai, P. T. (2016). Modelling and optimization of operational setpoint parameters for maximum fermentative biohydrogen production using Box-Behnken design, Fermentation, 2, 15.
  • Sekoai, P. T., and Daramola, M. O. (2015). Biohydrogen production as a potential energy fuel in South Africa, Biofuel Res. J., 2, 223–226.
  • Sekoai, P. T., and Gueguim Kana, E. B. (2013). A two-stage modelling and optimization of biohydrogen production from a mixture of agro-municipal waste, Int. J. Hydrogen Energy, 38(1), 8657–8663.
  • Sekoai, P. T., and Gueguim Kana, E. B. (2014). Semi-pilot scale production of hydrogen from organic fraction of solid municipal waste and electricity generation from process effluents, Biomass Bioenergy, 60, 156–163.
  • Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y., and Chang, J. S. (2012). Biohydrogen production: Current perspectives and the way forward, Int. J. Hydrogen Energy, 37, 15616–15631.
  • Singh, L., and Wahid, Z. (2014). Enhancement of hydrogen production from palm oil mill effluent via cell immobilisation technique, Int. J. Energy Res., 39(2), 2215–2222.
  • Srikanth, S., and Venkata Mohan, S. (2012). Regulatory function of divalent cations in controlling the acidogenic production process, RSC Adv., 2, 6576–6589.
  • Wang, A., Sun, D., Cao, G., Guangli, C., Wang, H., Ren, N., Wu, W. M., and Logan, B. E. (2011). Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell, Bioresour. Technol., 102, 4137–4143.
  • Wang, J., and Wan, W. (2008a). Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures, Int. J. Hydrogen Energy, 33, 1215–1220.
  • Wang, J., and Wan, W. (2008b). Influence of Ni2+ concentration on biohydrogen production, Bioresour. Technol., 99, 8864–8868.
  • Wang, L., Liu, W., Kang, L., Yang, C., Zhou, A., and Wang, A. (2014). Enhanced biohydrogen production from waste activated sludge in combined strategy of chemical pretreatment and microbial electrolysis, Int. J. Hydrogen Energy, 39(23), 11913–11919.
  • Wang, Y. B., Li, R. J., Li, W. W., and Fan, T. Y. (2012). Effects of pretreatment of natural bacterial source and raw material on fermentative biohydrogen production, Int. J. Hydrogen Energy, 37(1), 831–836.
  • Whiteman, J. K., and Gueguim Kana, E. B. (2014). Comparative assessment of the artificial neural network and response surface modelling efficiencies for biohydrogen production on sugar cane molasses, Bioenergy Res., 7(1), 295–305.
  • Wong, Y. M., Juan, J. C., Gan, H. M., and Austin, A. M. (2014). Draft genome sequence of Clostridium perfringens strain JJC, a highly efficient hydrogen producer isolated from landfill leachate sludge, Genome Announc., 2, 1–2.
  • Wongtanet, J., and Prapagdee, B. (2008). Effects of inorganic ions and glucose on hydrogen production by indigenous microbes in sewage sludge, EnvironmentAsia, 2, 30–36.
  • Wu, K., Chang, J., and Chang, C. (2006). Biohydrogen production using suspended and immobilized mixed microflora, J. Chinese Inst. Chem. Eng., 37(6), 545–550.
  • Xiao, L., Deng, Z., Fung, K. Y., and Ng, K. M. (2013). Biohydrogen generation from anaerobic digestion of food waste, Int. J. Hydrogen Energy, 38, 1307–13913.
  • Yang, H., and Shen, J. (2006). Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch, Int. J. Hydrogen Energy, 31, 2137–2146.
  • Yang, S., Guarnieri, M. T., Smolinski, S., Ghirardi, M., and Pienkos, P. T. (2013). De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq, Biotechnol. Biofuels, 6, 118.
  • Zhang, Y., Liu, G., and Shen, J. (2005). Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations, Int. J. Hydrogen Energy, 30, 855–860.
  • Zheng, G., Kang, Z., and Qian, Y. (2009). Enhanced biohydrogen generation from organic wastewater containing NH4+ by phototrophic bacteria Rhodobacter sphaeroides AR-3, Frontiers Environ. Sci. Eng., 3, 387–392.
  • Zheng, X. J., and Yu, H. Q. (2005). Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures, J. Environ. Manage., 74, 65–70.
  • Zhu, H., Fang, H. P. P., Zhang, T., and Beaudette, L. A. (2007). Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides, Int. J. Hydrogen Energy, 32, 4112–4118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.