182
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Soft-sensor models to estimate the efficiency of H2S removal from an oil refinery stream of nonphenolic sour water

, &

References

  • Al-Degs, Y. S., El-Sheikh, A. H., Al Bakain, R. Z., Newman, A. P., and Al-Ghouti, M. A. (2016). Conventional and upcoming sulfur-cleaning technologies for petroleum fuel: A review, Energy Technol., 4, 679–699.
  • Aspentech, Inc. (2016). AspenOne Process Modeling, Version 8.4, Aspen Technology Inc., Bedford, Massachusetts, United States.
  • Bagajewicz, M. (2000). A review of recent design procedures for water networks in refineries and process plants, Comput. Chem. Eng., 24, 2093–2113.
  • Barros Neto, B., Scarmino, I. S., and Bruns, R. E. (2007). Como Fazer Experimentos, Editora Unicamp, Campinas, Brazil.
  • Blumberg, K. O., Walsh, M. P., and Pera, C. (2003). Low-sulfur Gasoline & Diesel: The Key to Lower Vehicle Emissions, Meeting of The International Council on Clean Transportation, 1–66, Napa, California, USA.
  • Brasil, M., Meleiro, L. A. C., Benincá, C., and Zanoelo, E. F. (2016). Yield of soybean protein isolate from defatted soybean flakes treated in an industrial plant and in laboratory: Experiments and modeling, J. Food Process. Eng., 39, 636–644.
  • CONAMA Resolução 436 (2011). Establish Limits on the Maximum Emission of Atmospheric Pollutants from Stationary Sources [Estabelece os limites máximos de emissão de poluentes atmosféricos para fontes fixas instaladas]. Diário Oficial da União, Brasília, DF, Brazil.
  • Dean, R. B., and Dixon, W. J. (1951). Simplified statistics for small numbers of observations, Anal. Chem., 23, 636–638.
  • Edgar, T. F., Himmelblau, D. M., and Lasdon, L. S. (2001). Optimization of Chemical Processes, McGraw-Hill, New York, USA.
  • Gonzaga, J. C. B., Meleiro, L. A. C., Kiang, C., and Maciel Filho, R. (2009). ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process, Comput. Chem. Eng., 33, 43–49.
  • Guerreiro, C. B. B., Foltescu, V., and de Leeuw, F. (2014). Air quality status and trends in Europe, Atmos. Environ., 98, 376–384.
  • Günay, M. E., and Yildirim, R. (2011). Neural network analysis of selective co oxidation over copper-based catalysts for knowledge extraction from published data in the literature, Ind. Eng. Chem. Res., 50, 12488–12500.
  • Hatcher, N. A., and Weiland, R. H. (2012). Reliable design of sour water strippers, Petrol. Technol. Quart., Q3, 1–9.
  • Hatcher, N. A., Alvis, R. S., and Weiland, R. H. (2012). Sour water stripper performance in the presence of heat stable-salts, Proceedings of the Brimstone Sulfur Symposium, 1–8, Vail, Colorado, USA.
  • Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, Prentice-Hall, Upper Saddle River, USA.
  • Himmelblau, D. M. (2000). Applications of artificial neural networks in chemical engineering, Korean J. Chem. Eng., 17, 373–392.
  • Kay, J. W., and Titterington, D. M. (2000). Statistics and Neural Networks, Oxford University Press, Oxford, UK.
  • Kensell, W. M., and Quinlan, M. P. (1996). Sulfur compound extraction and sweetening. In Handbook of Petroleum Refining Processes; R. A. Meyers, Ed.; McGraw-Hill, New York.
  • Khalek, I. A., Bougher, T. L., and Merritt, P. M. (2009). Phase 1 of the Advanced Collaborative Emissions Study, Coordinating Research Council, Alpharetta, USA.
  • Khudenko, B. M., Gitman, G. M., and Weschsler, T. E. P. (1993). Oxygen based Claus process for recovery of sulfur from H2S gases, J. Environ. Eng., 119, 1233–1251.
  • Largeteau, D., Ross, J., Laborde, M., and Wisdom, L. (2012). Challenges and opportunities of 10 ppm sulphur gasoline: Part 1, Petrol. Technol. Quart., Q3, 1–10.
  • Lee, D., Lee, J.-M., Lee, S.-Y., and Lee, I.-B. (2002). Dynamic simulation of the sour water stripping process and modified structure for effective pressure control, Trans. Inst. Chem. Eng. Part A, 80, 167–177.
  • Montgomery, D. C. (2001). Design and Analysis of Experiments, John Wiley & Sons, New York, USA.
  • Nabgan, B., Abdullah, T. A. T., Nabgan, W., Ahmad, A., Saeh, I., and Moghadamian, K. (2016). Process simulation for removing impurities from wastewater using sour water 2-strippers system via Aspen Hysys, Chem. Prod. Process Model., 11, 315–321.
  • Nassar, I. M., El-Din, M. R. N., Morsi, R. E., Abd El-Azeim, A., and Hashem, A. I. (2016). Eco friendly nanocomposite materials to scavenge hazard gas H2S through fixed-bed reactor in petroleum application, Renew. Sust. Energ. Rev., 65, 101–112.
  • Nassif, N. (2012). Modeling and optimization of HVAC systems using artificial intelligence approaches, ASHRAE Trans., 118, 133–140.
  • Quinlan, M., and Hati, A. (2010). Processing NH3 acid gas in a sulphur recovery unit, Petrol. Technol. Quart., Q2, 45–55.
  • Rajagopal, K., Lacerda, R., Slobodcicov, I., and Campagnolo, E. (2009). Modeling and simulation of hydrogen sulfide removal from petroleum production lines by chemical scavengers, Chem. Eng. Commun., 196, 1237–1248.
  • Selim, H., Gupta, A. K., and Sassi, M. (2008). Acid gas composition effects on the reactor temperature in Claus reactor, 6th AIAA International Energy Conversion Engineering Conference (IECEC), Cleveland, OH, USA.
  • Silva, I. S., Alencar, J. R. B., and Danielski, L. (2014). Influência de variáveis de processo na simulação de unidades de águas ácidas de refinaria, Proceedings of Brazilian Congress of Chemical Engineering, 1–7, Florianópolis, SC, Brazil.
  • StatSoft Inc. (2007). STATISTICA (Data Analysis Software System). Version 8.0. TIBCO Software Inc., Palo Alto, California, United States.
  • Stein, C., Elster, J., Heine, I., Sachse, J., and Peper, H. (1988). Removal of ammonium nitrogen and hydrogen sulphide from oil refinery wastewater, Oil Gas-Euro Mag., 24, 36–39.
  • Weiland, R. H., and Hatcher, N. A. (2012). Sour water strippers exposed, Proceedings of Laurence Reid Gas Conditioning Conference, 1–15, Norman, Oklahoma, USA.
  • Weiland, R. H., Hatcher, N. A., and Jones, C. E. (2013). Stripping phenolic water, Sulphur, 144, 1–4.
  • Zanoelo, E. F., Rocha, S. C., and Rezende, D. F. (2004). Influence of operating parameters on the average spout width in two-dimensional spouted beds, Can. J. Chem. Eng., 82, 89–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.