332
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Tri-reforming of surrogate biogas over Ni/Mg/ceria–zirconia/alumina pellet catalysts

, , , , , , , & show all

References

  • Al-Fatesh, A. S., Naeem, M. A., Khan, W. U., Abasaeed, A. E., and Fakeeha, A. H. (2014). Effect of nano-support and type of active metal on reforming of CH4 with CO2, J. Chin. Chem. Soc., 61, 461–470.
  • Alirezaei, I., Hafizi, A., Rahimpour, M. R., and Raeissi, S. (2016). Application of zirconium modified Cu-based oxygen carrier in chemical looping reforming, J. CO2 Util., 14, 112–121.
  • Asencios, Y. J. O., Nascente, P. A. P., and Assaf, E. M. (2012). Partial oxidation of methane on NiO–MgO–ZrO2 catalysts, Fuel, 97, 630–637.
  • Asencios, Y. J. O., Rodella, C. B., and Assaf, E. M. (2013). Oxidative reforming of model biogas over NiO–Y2O3–ZrO2 catalysts, Appl. Catal. B, 132–133, 1–12.
  • Avraam, D. G., Halkides, T. I., Liguras, D. K., Bereketidou, O. A., and Goula, M. A. (2010). An experimental and theoretical approach for the biogas steam reforming reaction, Int. J. Hydrogen Energy, 35, 9818–9827.
  • Barzetti, T., Selli, E., Moscotti, D., and Forni, L. (1996). Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts, J. Chem. Soc. Faraday Trans., 92, 1401–1407.
  • Basagiannis, A. C., and Verykios, X. E. (2007). Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 catalysts, Catal. Today, 127, 256–264.
  • Bereketidou, O. A., and Goula, M. A. (2012). Biogas reforming for syngas production over nickel supported on ceria–alumina catalysts, Catal. Today, 195, 93–100.
  • Bhogeswararao, S., Pavan Kumar, V., Chary, K. V. R., and Srinivas, D. (2013). Noble metal promoted CeO2–ZrO2-supported Ni catalysts for liquid-phase hydrogenation of cinnamaldehyde, Catal. Lett., 143, 1266–1276.
  • Bitter, J. H., Seshan, K., and Lercher, J. A. (1999). Deactivation and coke accumulation during CO2/CH4 reforming over Pt catalysts, J. Catal., 183, 336–343.
  • Cai, X., Cai, Y., and Lin, W. (2008). Autothermal reforming of methane over Ni catalysts supported over ZrO2-CeO2-Al2O3, J. Nat. Gas Chem., 17, 201–207.
  • Charisiou, N. D., Siakavelas, G., Papageridis, K. N., Baklavaridis, A., Tzounis, L., Avraam, D. G., and Goula, M. A. (2016). Syngas production via the biogas dry reforming reaction over nickel supported on modified with CeO2 and/or La2O3 alumina catalysts, J. Nat. Gas Sci. Eng., 31, 164–183.
  • Chein, R. Y., Chen, Y. C., Yu, C. T., and Chung, J. N. (2015). Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures, J. Nat. Gas Sci. Eng., 26, 617–629.
  • Christiansen, L. J. (2016). Use of modeling in scale-up of steam reforming technology, Catal. Today, 272, 14–18.
  • Cimenler, U., Joseph, B., and Kuhn, J. N. (2016). Effect of zeolite membrane shell thickness on reactant selectivity for hydrocarbon steam reforming using layered catalysts, Energy Fuels, 30, 5300–5308.
  • Corthals, S., Van Nederkassel, J., Geboers, J., De Winne, H., Van Noyen, J., Moens, B., Sels, B., and Jacobs, P. (2008). Influence of composition of MgAl2O4 supported NiCeO2ZrO2 catalysts on coke formation and catalyst stability for dry reforming of methane, Catal. Today, 138, 28–32.
  • Daza, Y. A., and Kuhn, J. N. (2016). CO2 conversion by reverse water gas shift catalysis: Comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels, RSC Adv., 6, 49675–49691.
  • Ding, R. Y., and Yan, Z. (2002). Adsorption properties studies of the nickel catalysts for carbon dioxide reforming of methane, Fuel Chem. Div. Preprints, 46, 103–105.
  • Du, X., France, L. J., Kuznetsov, V. L., Xiao, T., Edwards, P. P., AlMegren, H., and Bagabas, A. (2014). Dry reforming of methane over ZrO2-supported Co–Mo carbide catalyst, Appl. Pet. Res., 4, 137–144.
  • Elsayed, N. H., Roberts, N. R. M., Joseph, B., and Kuhn, J. N. (2015). Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts, Appl. Catal. B, 179, 213–219.
  • Farrauto, R. J., and Armor, J. N. (2016). Moving from discovery to real applications for your catalyst, Appl. Catal. A, 527, 182–189.
  • Fogler, H. (1999). Elements of Chemical Reaction Engineering, 3rd ed. Prentice Hall PTR, Upper Saddle River, New Jersey.
  • García-Vargas, J. M., Valverde, J. L., de Lucas-Consuegra, A., Gómez-Monedero, B., Dorado, F., and Sánchez, P. (2013). Methane tri-reforming over a Ni/β-SiC-based catalyst: Optimizing the feedstock composition, Int. J. Hydrogen Energy, 38, 4524–4532.
  • García-Vargas, J. M., Valverde, J. L., Díez, J., Dorado, F., and Sánchez, P. (2015). Catalytic and kinetic analysis of the methane tri-reforming over a Ni–Mg/β-SiC catalyst, Int. J. Hydrogen Energy, 40, 8677–8687.
  • Goula, M. A., Charisiou, N. D., Siakavelas, G., Tzounis, L., Tsiaoussis, I., Panagiotopoulou, P., Goula, G., and Yentekakis, I. V. (2017). Syngas production via the biogas dry reforming reaction over Ni supported on zirconia modified with CeO2 or La2O3 catalysts, Int. J. Hydrogen Energy, 42, 13724–13740.
  • Italiano, C., Vita, A., Fabiano, C., Laganà, M., and Pino, L. (2015). Bio-hydrogen production by oxidative steam reforming of biogas over nanocrystalline Ni/CeO2 catalysts, Int. J. Hydrogen Energy, 40, 11823–11830.
  • Izquierdo, U., Barrio, V. L., Requies, J., Cambra, J. F., Güemez, M. B., and Arias, P. L. (2013). Tri-reforming: A new biogas process for synthesis gas and hydrogen production, Int. J. Hydrogen Energy, 38, 7623–7631.
  • Kang, J. S., Kim, D. H., Lee, S. D., Hong, S. I., and Moon, D. J. (2007). Nickel-based tri-reforming catalyst for the production of synthesis gas, Appl. Catal. A, 332, 153–158.
  • Karuppiah, J., Linga Reddy, E., and Mok, Y. (2016). Anodized aluminum oxide supported NiO-CeO2 catalyst for dry reforming of propane, Catalysts, 6, 154.
  • Lee, D., Hacarlioglu, P., and Oyama, S. T. (2004). The effect of pressure in membrane reactors: trade-off in permeability and equilibrium conversion in the catalytic reforming of CH4 with CO2 at high pressure, Top. Catal., 29, 45–57.
  • Lee, S.-H., Cho, W., Ju, W.-S., Cho, B.-H., Lee, Y.-C., and Baek, Y.-S. (2003). Tri-reforming of CH4 using CO2 for production of synthesis gas to dimethyl ether, Catal. Today, 87, 133–137.
  • Li, J., Yan, R., Xiao, B., Tee Liang, D., and Du, L. (2008). Development of nano-NiO/Al2O3 catalyst to be used for tar removal in biomass gasification, Environ. Sci. Technol., 42, 6224–6229.
  • Liu, J., Hu, H., Jin, L., Wang, P., and Zhu, S. (2010). Integrated coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst for improving tar yield, Fuel Process. Technol., 91, 419–423.
  • Liu, Z., Grinter, D. C., Lustemberg, P. G., Nguyen-Phan, T. D., Zhou, Y., Luo, S., Waluyo, I., Crumlin, E. J., Stacchiola, D. J., Zhou, J., Carrasco, J., Busnengo, H. F., Ganduglia-Pirovano, M. V., Senanayake, S. D., and Rodriguez, J. A. (2016). Dry reforming of methane on a highly-active Ni-CeO2 catalyst: effects of metal-support interactions on C-H bond breaking, Angew. Chem. Int. Ed. Engl., 55, 7455–7459.
  • Maciel, L. J. L., de Souza, A. E. Á. M., Cavalcanti-Filho, V. O., Knoechelmann, A., and de Abreu, C. A. M. (2010). Kinetic evaluation of the tri-reforming process of methane for syngas production, React. Kinetic Mech. Catal., 101, 407–416.
  • Olah, G. A., Goeppert, A., Czaun, M., Mathew, T., May, R. B., and Prakash, G. K. (2015). Single step bi-reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to metgas (CO-2H2) for methanol synthesis: self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen, J. Am. Chem. Soc., 137, 8720–8729.
  • Palma, V., Ricca, A., Meloni, E., Martino, M., Miccio, M., and Ciambelli, P. (2016). Experimental and numerical investigations on structured catalysts for methane steam reforming intensification, J. Clean. Prod., 111, 217–230.
  • Pino, L., Vita, A., Cipitì, F., Laganà, M., and Recupero, V. (2011). Hydrogen production by methane tri-reforming process over Ni–ceria catalysts: Effect of La-doping, Appl. Catal. B, 104, 64–73.
  • Pino, L., Vita, A., Laganà, M., and Recupero, V. (2014). Hydrogen from biogas: Catalytic tri-reforming process with Ni/LaCeO mixed oxides, Appl. Catal. B, 148–149, 91–105.
  • Rathod, S. N. M., Arbad, B., and Lande, M. (2015). Preparation of Mg-doped Ce-Zr solid catalysts and their catalytic potency for the synthesis of 5-arylidene-2, 4-thiazolidinediones via Knoevenagel condensation, S. Afr. J. Chem., 65, 196–201.
  • Reddy, B. M., and Khan, A. (2005). Nanosized CeO2–SiO2, CeO2–TiO2, and CeO2–ZrO2 mixed oxides: influence of supporting oxide on thermal stability and oxygen storage properties of ceria, Catal. Surv. Asia, 9, 155–171.
  • Rostrup-Nielsen, J. R., Sehested, J., and Nørskov, J. K. (2002). Hydrogen and synthesis gas by steam- and CO2 reforming, Adv. Catal., 47, 65–139.
  • Roy, P. S., Park, C. S., Raju, A. S. K., and Kim, K. (2015a). Steam-biogas reforming over a metal-foam-coated (Pd–Rh)/(CeZrO2–Al2O3) catalyst compared with pellet type alumina-supported Ru and Ni catalysts, J. CO2 Util., 12, 12–20.
  • Roy, P. S., Raju, A. S. K., and Kim, K. (2015b). Influence of S/C ratio and temperature on steam reforming of model biogas over a metal-foam-coated Pd–Rh/(CeZrO2–Al2O3) catalyst, Fuel, 139, 314–320.
  • Saikia, P., Miah, A. T., Malakar, B., and Bordoloi, A. (2015). Enhanced catalytic activity of supported gold catalysts for oxidation of noxious environmental pollutant CO, Indian J. Mater. Sci., 2015, 1–10.
  • Sarkar, D., Mohapatra, D., Ray, S., Bhattacharyya, S., Adak, S., and Mitra, N. (2007). Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder, Ceram. Int., 33, 1275–1282.
  • Schulz, L. A., Kahle, L. C. S., Delgado, K. H., Schunk, S. A., Jentys, A., Deutschmann, O., and Lercher, J. A. (2015). On the coke deposition in dry reforming of methane at elevated pressures, Appl. Catal. A, 504, 599–607.
  • Singha, R. K., Das, S., Pandey, M., Kumar, S., Bal, R., and Bordoloi, A. (2016a). Ni nanocluster on modified CeO2–ZrO2 nanoporous composite for tri-reforming of methane, Catal. Sci. Technol., 6, 7122–7136.
  • Singha, R. K., Shukla, A., Yadav, A., Adak, S., Iqbal, Z., Siddiqui, N., and Bal, R. (2016b). Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst, Appl. Energy, 178, 110–125.
  • Song, C., and Pan, W. (2004). Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios, Catal. Today, 98, 463–484.
  • Soykal, I. I., Sohn, H., Singh, D., Miller, J. T., and Ozkan, U. S. (2014). Reduction characteristics of ceria under ethanol steam reforming conditions: effect of the particle size, ACS Catal., 4, 585–592.
  • Vita, A., Cristiano, G., Italiano, C., Pino, L., and Specchia, S. (2015). Syngas production by methane oxy-steam reforming on Me/CeO2 (Me = Rh, Pt, Ni) catalyst lined on cordierite monoliths, Appl. Catal. B, 162, 551–563.
  • Walker, D. M., Pettit, S. L., Wolan, J. T., and Kuhn, J. N. (2012). Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni–MgO–(Ce,Zr)O2 catalysts, Appl. Catal. A, 445–446, 61–68.
  • Wang, X., and Ozkan, U. S. (2005). Characterization of active sites over reduced Ni-Mo/Al2O3 catalysts for hydrogenation of linear aldehydes, J. Phys. Chem. B, 109, 1882–1890.
  • Yang, N., Damgaard, A., Kjeldsen, P., Shao, L. M., and He, P. J. (2015). Quantification of regional leachate variance from municipal solid waste landfills in China, Waste Manage., 46, 362–372.
  • Zhang, C., Zhang, J., and Ma, J. (2012). Hydrogen catalytic combustion over a Pt/Ce0.6Zr0.4O2/MgAl2O4 mesoporous coating monolithic catalyst, Int. J. Hydrogen Energy, 37, 12941–12946.
  • Zhang, J., and Li, F. (2015). Coke-resistant Ni@SiO2 catalyst for dry reforming of methane, Appl. Catal. B, 176–177, 513–521.
  • Zhang, Y., Zhang, S., Gossage, J. L., Lou, H. H., and Benson, T. J. (2014). Thermodynamic analyses of tri-reforming reactions to produce syngas, Energy Fuels, 28, 2717–2726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.