247
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Sequencing coagulation–photodegradation treatment of Malachite Green dye and textile wastewater through ZnO micro/nanoflowers

ORCID Icon, , & ORCID Icon

References

  • American Water Works Association and Letterman, R. D. (1999). Water Quality and Treatment: A Handbook of Community Public Water Supplies, 5th ed., McGraw-Hill Inc., New York.
  • An, S., Liu, X., Yang, L., and Zhang, L. (2015). Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: Study in single- and binary-solute systems, Chem. Eng. Res. Des., 94, 726–735.
  • APHA, AWWA, and WPCF (2005). Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, DC, USA.
  • Asghar, A., Abdul Rahman, A. A., and Wan Daud, W. M. A. (2017). Sequential optimization for minimizing material cost and treatment time of fenton oxidation for textile wastewater treatment, Chem. Eng. Commun., 204, 873–883.
  • Aylward, G., and Findlay, T. (2008). SI Chemical Data Book, 4th ed., John Wiley & Sons Ltd., Australia.
  • Baeissa, E. S. (2016). Environmental remediation of aqueous methyl orange dye solution via photocatalytic oxidation using Ag–GdFeO3 nanoparticles, J. Alloy Compd., 678, 267–272.
  • Bakraouy, H., Souabia, S., Diguaa, K., Dkhissia, O., Sabarb, M., and Fadil, M. (2017). Optimization of the treatment of an anaerobic pretreated landfill leachate by a coagulation–flocculation process using experimental design methodology, Process Saf. Environ., 109, 621–630.
  • Baruah, S., Thanachayanont, C., and Dutta, J. (2008). Growth of ZnO nanowires on nonwoven polyethylene fibers, Sci. Technol. Adv. Mater., 9, 1–8.
  • Behnajady, M. A., Modirshahla, N., Shokri, M., Zeininezhad, A., and Zamani, H. A. (2009). Enhancement photocatalytic activity of ZnO nanoparticles by silver doping with optimization of photodeposition method parameters, J. Environ. Sci. Health Part A, 44, 666–672.
  • Chakrabarti, S., and Dutta, B. K. (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater., 112, 1269–1278.
  • Chowdhury, Z. K., Amy, G. L., and Bales, R. C. (1991). Coagulation of submission colloids in water treatment by incorporation into aluminium hydroxide floc, Environ. Sci. Technol., 25, 1766–1773.
  • Chiou, C. H., and Juang, R. S. (2007). Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles, J. Hazard. Mater., 149, 1–7.
  • Chu, W. (2001). Dye removal from textile dye wastewater using recycled alum sludge, Water Res., 35, 3147–3152.
  • Elwakeel, K. Z., Elgarahy, A. M., and Mohammad, S. H. (2017). Use of beach bivalve shells located at Port Said coast (Egypt) as a green approach for methylene blue removal, J. Environ. Chem. Eng., 5, 578–587.
  • Fang, X. S., Zhai, T. Y., Gautam, U. K., Li, L., Wu, L. M., Bando, Y., and Golberg, D. (2011). ZnS nanostructures: From synthesis to applications, Prog. Mater. Sci., 56, 175–287.
  • Freitas, T. K. F. S., Oliveira, V. M., Souza, M. T. F. D., Geraldino, H. C. L., Almeida, V. C., Favaro, S. L., and Garcia, J. C. (2015). Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant, Ind. Crops Prod., 76, 538–544.
  • Guettai, N., and Amar, H. A. (2005). Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: Kinetics study, Desalination, 185, 439–448.
  • Hadjltaief, B. H., Ameur, S. B., Costa, P. D., Zina, M. B., and Galvez, M. B. (2018). Photocatalytic decolorization of cationic and anionic dyes over ZnO nanoparticle immobilized on natural Tunisian clay, Appl. Clay Sci., 152, 148–157.
  • Hamdaoui, O., Saoudi, F., Chiha, M., and Naffrechoux, E. (2008). Sorption of malachite green by a novel sorbent, dead leaves of plane tree: equilibrium and kinetic modelling, Chem. Eng. J., 143, 73–84.
  • Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69–96.
  • Huang, H. H., Tseng, D. H., and Juang, L. C. (2006). Heterogeneous photocatalytic degradation of monochlorobenzene in water, J. Hazard. Mater., 156, 186–193.
  • Huang, X., Gao, B. Y., Yue, Q. Y., Zhang, Y. Y., and Sun, S. L. (2015). Compound bioflocculant used as a coagulation aid in synthetic dye wastewater treatment: The effect of solution pH, Sep. Purif. Technol., 154, 108–114.
  • Inoue, T., Kikuchi, K., Hirose, K., Iino, M., and Nagano, T. (2001). Small molecule-based laser inactivation of inositol 1,4,5-trisphosphate receptor, Chem. Biol., 8, 9–15.
  • Jamil, T. S., Ghaly, M. Y., El-Seesy, I. E., Souaya, E. R., and Nasr, R. A. (2011). A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater, J. Hazard. Mater., 185, 353–358.
  • Jorfi, S., Barzegar, G., Ahmadi, M., Soltani, R. D. C., Haghighifard, N. A. J., Takdastan, A., Saeedi, R., and Abtahi, M. (2016). Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles, J. Environ. Manage., 177, 111–118.
  • Karnan, T., and Selvakumar, S. A. S. (2016). Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye, J. Mol. Struct., 1125, 358–365.
  • Konyar, M., Yildiz, T., Aksoy, M., Yatmaz, H. C., and Ozturk, K. (2017). Reticulated ZnO photocatalyst: Efficiency enhancement in degradation of Acid Red 88 azo dye by catalyst surface cleaning, Chem. Eng. Commun., 204, 705–710.
  • Korbahti, B. K., Artut, K., Gecgel, C., and Ozer, A. (2011). Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures, Chem. Eng. J., 173, 677–688.
  • Lam, S. M., Sin, J. C., Abdullah, A. Z., and Mohamed, A. R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review, Desalin. Water Treat., 41, 131–169.
  • Lam, S. M., Sin, J. C., Abdullah, A. Z., and Mohamed, A. R. (2013). Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation, Chem. Paper, 67, 1277–1284.
  • Lam, S. M., Sin, J. C., Satoshi, I., Abdullah, A. Z., and Mohamed, A. R. (2014). Enhanced sunlight photocatalytic performance over Nb2O5/ZnO nanorod composites and the mechanism study, Appl. Catal. A Gen., 471, 126–135.
  • Li, H. Y., Liu, S. Y., Zhao, J. H., and Feng, N. (2016). Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process, Colloids Surf. A Physicochem. Eng. Asp., 494, 222–227.
  • Liu, C. J., Cheng, L., Zhao, Y. F., and Zhu, L. P. (2017). Interfacially crosslinked composite porous membranes for ultrafast removal of anionic dyes from water through permeating adsorption, J. Hazard. Mater., 337, 217–225.
  • Mohajerani, M. S., Lak, A., and Simchi, A. (2009). Effect of morphology on the solar photocatalytic behavior of ZnO nanostructures, J. Alloys Compd., 485, 616–620.
  • Morais, J. L. D., and Zamora, P. P. (2005). Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates, J. Hazard. Mater., 123, 181–186.
  • Nam, W. S., Woo, K. C., and Han, G. Y. (2009). Photooxidation of anionic surfactant (sodium lauryl sulfate) in a three-phase fluidized bed reactor using TiO2/SiO2 photocatalyst, J. Ind. Eng. Chem., 15, 348–353.
  • Nezamzadeh-Ejhieh, A., and Shahriari, E. (2014). Photocatalytic decolorization of methyl green using Fe(II)-o-phenanthroline as supported onto zeolite Y, J. Ind. Eng. Chem., 20, 2719–2726.
  • Okte, A. N., and Yilmaz, O. (2008). Photodecolorization of methyl orange by yatrium incorporated TiO2 supported ZSM-5, Appl. Catal. B Environ., 85, 92–102.
  • Oladoja, N. A., and Aliu, Y. D. (2009). Snail shell as coagulant aid in the alum precipitation of malachite green from aqua system, J. Hazard. Mater., 164, 1496–1502.
  • Rao, A. N., Sivasankar, B., and Sadasivam, V. (2009). Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst, J. Hazard. Mater., 166, 1357–1361.
  • Rauf, M. A., and Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J., 151, 10–18.
  • Rosli, N. I. M., Lam, S. M., Sin, J. C., and Mohamed, A. R. (2015). Surfactant-free precipitation synthesis, growth mechanism and photocatalytic studies of ZnO nanostructures, Mater. Lett., 160, 259–262.
  • Santos, C. C. D., Mouta, R., Junior, M. C. C., Santanaa, S. A. A., Silva, H. A. D. S., and Bezerra, C. W. B. (2018). Chitosan-edible oil based materials as upgraded adsorbents for textile dyes, Carbohydr. Polym., 180, 182–191.
  • Sauer, T., Cesconeto, N. G., Jose, H. J., and Moreira, R. F. P. M. (2002). Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor, J. Photochem. Photobiol. A Chem., 149, 147–154.
  • Sin, J. C., Lam, S. M., Lee, K. T., and Mohamed, A. R. (2013). Self-assembly fabrication of ZnO hiereachical micro/nanospheres for enhanced photocatalytic degradation of endocrine-disrupting chemicals, Mater. Sci. Semicon. Proc., 16, 1542–1550.
  • Sin, J. C., Lim, C. A., Lam, S. M., and Mohamed, A. R. (2017). Surfactant-free hydrothermal synthesis of flower-like BiOBr hierarchical structure and its visible light-driven catalytic activity towards the degradation of sunset yellow, J. Mater. Sci. Mater. Electron., 28, 13236–13246.
  • Shi, B., Li, G., Wang, D., Feng, C., and Tang, H. (2007). Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species, J. Hazard. Mater., 143, 567–574.
  • Stylidi, M., Kondarides, D. I., and Verykios, X. E. (2004). Visible light-induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions, Appl. Catal. B Environ., 47, 189–201.
  • Sun, J. H., Wang, X. L., and Sun, J. Y. (2006). Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst, J. Mol. Catal. A Chem., 260, 241–246.
  • Tang, H. X., Xiao, F., and Wang, D. S. (2015). Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by PACl and alum: A critical review, Adv. Colloid Interface Sci., 226, 78–85.
  • Vaiano, V., Matarangolo, M., Sacco, O., and Sannino, D. (2017). Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts, Appl. Catal. B Environ., 209, 621–630.
  • Wolski, L., Whitten, J. E., Sobczak, I., and Ziolek, M. (2017). The effect of the preparation procedure on the morphology, texture and photocatalytic properties of ZnO, Mater. Res. Bull., 85, 35–46.
  • Yang, R., Li, D., Li, A., and Yang, H. (2018). Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water, Appl. Clay Sci., 151, 20–28.
  • Zeng, G. Y., Ye, Z. B., He, Y., Yang, X., and Feng, Z. L. (2017). Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater, Chem. Eng. J., 323, 572–583.
  • Zonoozi, M. H., Alavi Moghaddam, M. R., and Arami, M. (2009). Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum, Water. Sci. Technol., 59, 1343–1351.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.