261
Views
4
CrossRef citations to date
0
Altmetric
Articles

Passive, active, and interactive drag-reduction technique to reduce friction and enhance the mixing intensity in rotating disk apparatus

ORCID Icon, , &
Pages 1623-1640 | Received 15 Aug 2017, Accepted 03 Apr 2018, Published online: 29 May 2018

References

  • Abdulbari, H. A., Akindoyo, E. O., and Yousif, Z. (2015). A dual mechanism of the drag reduction by rigid polymers and cationic surfactant: Complex and nanofluids of xanthan gum and hexadecyl trimethyl ammonium chloride, Int. J. Res. Eng. Technol., 4, 84–93.
  • Abdulbari, H., Faraj, E., Gimbun, J., and Mahmood, W. (2015). Energy dissipation reduction using similarly-charged polymer-surfactant complex, Adv. Appl. Fluid Mech., 18, 113.
  • Abdulbari, H. A., Rashed, M. K., Amran, M., Salleh, M., and Ismail, M. H. S. (2016). A novel polymer–surfactant complex mixture to improve diesel fuel flow, Adv. Appl. Fluid Mech., 19, 669–685.
  • Andersen, G. W., Rohr, J. J., and Stanley, S. D. (1993). The combined drag effects of riblets and polymers in pipe flow, J. Fluids Eng., 115, 213–221.
  • Barbier, C., Jenner, E., and D’Urso, B. (2014). Large Drag Reduction over Superhydrophobic Riblets, arXiv Preprint arXiv:1406.0787, 1–7.
  • Bari, H. A., and Faraj, E. (2015). Studying the interaction between a new mixture in enhancing drag reduction efficiency, Int. J. Chem. Eng. Appl., 6, 277–280.
  • Bari, H. A., Yousif, Z., and Akindoyo, E. O. (2015). Enhancement of additives polymeric drag resistance to degradation, J. Purity Utility React. Environ., 4, 48–55.
  • Baron, A., Quadrio, M., and Vigevano, L. (1993). On the boundary layer/riblets interaction mechanisms and the prediction of turbulent drag reduction, Int. J. Heat Fluid Flow, 14, 324–332.
  • Bazanini, G., Bressan, J. D., and Klemz, M. A. (2008). Cavitation erosion wear of metallic specimens using the new compact rotating disk device, Thermal Eng., 7, 31–36.
  • Bechert, D. W., Bruse, M., and Hage, W. (2000). Experiments with three-dimensional riblets as an idealized model of shark skin, Exp. Fluids, 28, 403–412.
  • Bewersdorff, H. W., and Thiel, H. (1993). Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes, Appl. Sci. Res., 50, 347–368.
  • Chinaud, M., and Angeli, P. (2015). Effect of drag reducing polymer on horizontal liquid – liquid flows, Exp. Thermal Fluid Sci., 64, 164–174.
  • Choi, K. S. (1989). Near-wall structure of a turbulent boundary layer with riblets, J. Fluid Mech., 208, 417–458.
  • Choi, H. J., Kim, C. A., Sung, J. H., Kim, C. B., Chun, W., and Jhon, M. S. (2000). Universal drag reduction characteristics of saline water-soluble poly(ethylene oxide) in a rotating disk apparatus, Colloid Polym. Sci., 278, 701–705.
  • Choi, H. J., Lim, S. T., Lai, P.-Y., and Chan, C. K. (2002). Turbulent drag reduction and degradation of DNA, Phys. Rev. Lett., 89, 88302.
  • Christodoulou, C., Liu, K. N., and Joseph, D. D. (1991). Combined effects of riblets and polymers on drag reduction in pipes, Phys. Fluids, 3, 995.
  • de Caprariis, B., Di Rita, M., Stoller, M., Verdone, N., and Chianese, A. (2012). Reaction-precipitation by a spinning disc reactor: Influence of hydrodynamics on nanoparticles production, Chem. Eng. Sci., 76, 73–80.
  • Dean, B., and Bhushan, B. (2010). Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review Shark-skin surfaces for fluid-drag reduction in, Philos. Trans. R. Soc. A, 386, 4775–4806.
  • Dean, B., and Bhushan, B. (2012). The effect of riblets in rectangular duct flow, Appl. Surf. Sci., 258, 3936–3947.
  • Drzazga, M., Gierczycki, A., Dzido, G., and Lemanowicz, M. (2013). Influence of nonionic surfactant addition on drag reduction of water based nanofluid in a small diameter pipe, Chin. J. Chem. Eng., 21, 104–108.
  • El-Samni, O. A., Chun, H. H., and Yoon, H. S. (2007). Drag reduction of turbulent flow over thin rectangular riblets, Int. J. Eng. Sci., 45, 436–454.
  • Fredd, C. N., and Fogler, H. S. (1998). The kinetics of calcite dissolution in acetic acid solutions, Chem. Eng. Sci., 53, 3863Ð3874.
  • Garcia-Mayoral, and Jimenez, J. (2011). Drag reduction by riblets, Philos. Trans. R. Soc. A, 369, 1412–1427.
  • Goldstein, D. B., and Tuan, T. C. (1998). Secondary flow induced by riblets, J. Fluid Mech., 363, 115–151.
  • Greidanus, A. J., Delfos, R., Tokgoz, S., and Westerweel, J. (2015). Turbulent Taylor Couette flow over riblets: Drag reduction and the effect of bulk fluid rotation, Exp. Fluids, 56, 107.
  • Hage, W. (2011). Drag characteristics of longitudinal and transverse riblets at low dimensionless spacings, Exp. Fluids, 50, 363–373.
  • Hall, T., and Joseph, D. (2000). Rotating cylinder drag balance with application to riblets, Exp. Fluids, 29, 215–227.
  • Head, M. R., and Bandyopadhyay, P. (1981). New aspects of turbulent boundary-layer structure, J. Fluid Mech., 107, 297.
  • Hong, C. H., Jang, C. H., and Choi, H. J. (2015). Turbulent drag reduction with polymers in rotating disk flow, Polymers, 7, 1279–1298.
  • Hong, C. H., Zhang, K., Choi, H. J., and Yoon, S. M. (2010). Mechanical degradation of polysaccharide guar gum under turbulent flow, J. Ind. Eng. Chem., 16, 178–180.
  • Imayama, S., Henrik Alfredsson, P., and Lingwood, R. J. (2013). An experimental study of edge effects on rotating-disk transition, J. Fluid Mech., 716, 638–657.
  • Imayama, S., Lingwood, R. J., and Alfredsson, P. H. (2014). The turbulent rotating-disk boundary layer, Eur. J. Mech., B/Fluids, 48, 245–253.
  • Jafargholinejad, S., Pishevar, A., and Sadeghy, K. (2011). On the use of rotating-disk geometry for evaluating the drag-reducing efficiency of polymeric and surfactant additives, J. Appl. Fluid Mech., 4, 1–5.
  • Jin, Y., and Herwig, H. (2014). Turbulent flow and heat transfer in channels with shark skin surfaces: Entropy generation and its physical significance, Int. J. Heat Mass Transfer, 70, 10–22.
  • Karami, H. R., and Mowla, D. (2012). Investigation of the effects of various parameters on pressure drop reduction in crude oil pipelines by drag reducing agents, J. Non-Newtonian Fluid Mech., 177–178, 37–45.
  • Karami, H. R., and Mowla, D. (2013). A general model for predicting drag reduction in crude oil pipelines, J. Petroleum Sci. Eng., 111, 78–86.
  • Kim, C. A., Jo, D. S., Choi, H. J., Kim, C. B., and Jhon, M. S. (2000). A high-precision rotating disk apparatus for drag reduction characterization, Polym. Testing, 20, 43–48.
  • Kim, J. T., Kim, C. A., Zhang, K., Jang, C. H., and Choi, H. J. (2011). Effect of polymer-surfactant interaction on its turbulent drag reduction, Colloids Surf. A: Physicochem. Eng. Asp., 391, 125–129.
  • Koeltzsch, K., Dinkelacker, A., and Grundmann, R. (2002). Flow over convergent and divergent wall riblets,  Exp Fluids, 33, 346–350.
  • Koury, E., and Virk, P. S. (1995). Drag reduction by polymer solutions in a riblet-lined pipe, Appl. Sci. Res., 54, 323–347.
  • Larson, R. G. (1999). The Structure and Rheology of Complex Fluids, Oxford University Press, New York.
  • Li, K., Yang, C., Wang, Y., Jia, J., Xu, Y., and He, Y. (2012). A high-efficient rotating disk photoelectrocatalytic (PEC) reactor with macro light harvesting pyramid-surface electrode, AIChE J., 58, 2448–2455.
  • Lingwood, R. J. (1996). An experimental study of absolute instability of the rotating-disk boundary-layer flow, J. Fluid Mech., 314, 373.
  • Matras, Z., Malcher, T., and Gzyl-malcher, B. (2008). The influence of polymer – Surfactant aggregates on drag reduction, Thin Solid Films, 516, 8848–8851.
  • Mezger, T. G. (2002). The Rheology Handbook: For users of Rotational and Oscillatory Rheometers, Vencentz Verlog, Hannover, Germany.
  • Mohsenipour, A. A., Pal, R., and Prajapati, K. (2013). Effect of cationic surfactant addition on the drag reduction behaviour of anionic polymer solutions, Can. J. Chem. Eng., 91, 181–189.
  • Moussa, T., and Tiu, C. (1994). Factors affecting polymer degradation in turbulent pipe flow, Chem. Eng. Sci., 49, 1681–1692.
  • Mowla, D., and Naderi, A. (2006). Experimental study of drag reduction by a polymeric additive in slug two-phase flow of crude oil and air in horizontal pipes, Chem. Eng. Sci., 61, 1549–1554.
  • Mya, K. Y., Sirivat, A., and Jamieson, A. M. (2001). Structure of polymer-surfactant complexes by static light scattering, Macromolecules, 34, 5260–5266.
  • Neopane, H. P., Sujakhu, S., Shrestha, S., Subedi, K., and Basnet, A. (2012). Study of sediment erosion in hydraulic turbine using rotating disc apparatus. 2nd International Conference on the Developments in Renewable Energy Technology (ICDRET 2012), 1–4.
  • Povlock, S. L., and Schenk, J. O. (1997). A multisubstrate kinetic mechanism of dopamine transport in the nucleus accumbens and its inhibition by cocaine, J. Neurochem., 69, 1093.
  • Rao, M. A. (1999). Rheology of Fluid and Semisolid Foods: Principles and Applications, 2nd ed., Springer, Geneva.
  • Rashed, M. K., Amran, M., Salleh, M., Abdulbari, H. A., and Ismail, M. H. S. (2016). Enhancing the drag reduction phenomenon within a rotating disk apparatus using, Appl. Sci., 6, 355.
  • Ricco, P., and Hahn, S. (2013). Turbulent drag reduction through rotating discs, J. Fluid Mech., 722, 267–290.
  • Rodríguez-Calero, G. G., Rivera, H., Tryk, D. A., Scibioh, M. A., and Cabrera, C. R. (2010). Platinum electrodeposition at high surface area carbon vulcan-XC-72R material using a rotating disk-slurry electrode technique, J. Electrochem. Soc., 157, F189–F195.
  • Rohr, J., Anderson, G. W., and Reidy, L. W. (1989). An experimental investigation of the drag reducing effects of riblets in pipes. In Drag Reduction in Fluid Flows, Techniques for Friction Control, eds Sellin, R. H., and Moses, R. T, 263–270, West Sussex, Ellis Horwood.
  • Salem, A., Mansour, A., and Sylvester, N. D. (1998). Drag and heat transfer reduction caused by heterogeneous drag reducing surfactant additives, Chem. Eng. Commun., 186, 229–242.
  • Stoller, M., Miranda, L., and Chianese, A. (2009). Optimal feed location in a rotating disk reactor for the production of TiO2 nanoparticles, Chem. Eng. Trans., 17, 993–998.
  • Suawara, H., Yamauchi, M., Wakui, F., Usui, H., and Suuki, H. (2002). A study on cationic surfactants as drag-reducing additives, Chem. Eng. Commun., 189, 1671–1683.
  • Suksamranchit, S., Sirivat, A., and Jamieson, A. M. (2006). Polymer-surfactant complex formation and its effect on turbulent wall shear stress, J. Colloid Interface Sci., 294, 212–221.
  • Sung, J. H., Lim, S. T., Kim, C. A., Chung, H., and Choi, H. J. (2004). Mechanical degradation kinetics of poly (ethylene oxide) in a turbulent flow, Korea-Aust. Rheol. J., 16, 57–62.
  • Taylor, P., Lee, S., and Choi, Y. (2008). Decrement of spanwise vortices by a drag-reducing riblet surface, J. Tubulence, 9, 1–15.
  • Wang, J., Lan, S., and Chen, G. (2000). Experimental study on the turbulent boundary layer ow over riblets surface, Fluid Dyn. Res., 27, 217–229.
  • Watanabe, K., Takayama, T., Ogata, S., and Isozaki, S. (2003). Flow between two coaxial rotating cylinders with a highly water-repellent wall, AIChE J., 49, 1956–1963.
  • Wise, D. J., Alvarenga, C., and Ricco, P. (2014). Spinning out of control: Wall turbulence over rotating discs, Phys. Fluids, 26, 125107.
  • Yang, S., and Ding, D. (2013). Drag reduction induced by polymer in turbulent pipe flows, Chem. Eng. Sci., 102, 200–208.
  • Zakin, J. L., and Lui, H. L. (1983). Variables affecting drag reduction by nonionic surfactant additives, Chem. Eng. Commun., 23, 77–80.
  • Zhao, D., Tian, Q., Wang, M., and Jin, Y. (2014). Study on the hydrophobic property of shark-skin-inspired micro-riblets, J. Bionic Eng., 11, 296–302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.