134
Views
3
CrossRef citations to date
0
Altmetric
Articles

Microwave heating behaviors of used mercury-containing catalysts

, , , , , & show all
Pages 1653-1664 | Received 03 Sep 2017, Accepted 08 Apr 2018, Published online: 04 Jun 2018

References

  • Al-Harahsheh, M., and Kingman, S. W. (2004). Microwave-assisted leaching—A review, Hydrometallurgy, 73, 189–203.
  • Amankwah, R. K., Khan, A. U., Pickles, C. A., and Yen, W. T. (2005). Improved grindability and gold liberation by microwave pretreatment of a free-milling gold ore, Miner. Process. Extr. Metall., 114, 30–36.
  • Ania, C. O., Parra, J. B., Menéndez, J. A., and Pis, J. J. (2004). Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration, Carbon, 42, 1383–1387.
  • Ania, C. O., Parra, J. B., Menéndez, J. A., and Pis, J. J. (2005). Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons, Microporous Mesoporous Mater., 85, 7–15.
  • Ania, C. O., Parra, J. B., Menéndez, J. A., and Pis, J. J. (2007). Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals, Water Res., 41, 3299–3306.
  • Bing, L., and Li, C. (2010). Review on rapid development of China's PVC industry in the past 10 years and analysis on the trends in the year, Polyvinyl Chloride, 39, 1–8 (in Chinese).
  • Bradshaw, S. M., van Wyk, E. J., and de Swardt, J. B. (1998). Microwave heating principles and the application to the regeneration of granular activated carbon, J. S. Afr. Inst. Min. Metall., 98, 201–210.
  • Cha, C. Y., and Carlisle, C. T. (2001). Microwave process for volatile organic compound abatement, J. Air Waste Manag. Assoc., 51, 1628–1641.
  • Coelho, R. (2012). Physics of Dielectrics for the Engineer, Elsevier, New York.
  • Conte, M., Carley, A. F., Attard, G., Herzing, A. A., Kiely, C. J., and Hutchings, G. J. (2008b). Hydrochlorination of acetylene using supported bimetallic Au-based catalysts, J. Catal., 257, 190–198.
  • Conte, M., Carley, A. F., Heirene, C., Willock, D., Johnston, P., Herzing, A., Kiely, C. J., and Hutchings, G. J. (2007). Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism, J. Catal., 250, 231–239.
  • Conte, M., Carley, A. F., and Hutchings, G. J. (2008a). Reactivation of a carbon-supported gold catalyst for the hydrochlorination of acetylene, Catal. Lett., 124, 165–167.
  • Conte, M., Davies, C. J., Morgan, D. J., Davies, T. E., Carley, A. F., Johnston, P., and Hutchings, G. J. (2013). Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene, Catal. Sci. Technol., 3, 128–134.
  • Foo, K. Y., and Hameed, B. H. (2009). Recent developments in the preparation and regeneration of activated carbons by microwaves, Adv. Colloid Interface Sci., 149, 19–27.
  • Foo, K. Y., and Hameed, B. H. (2012a). A rapid regeneration of methylene blue dye-loaded activated carbons with microwave heating, J. Anal. Appl. Pyrolysis, 98, 123–128.
  • Foo, K. Y., and Hameed, B. H. (2012b). Microwave-assisted regeneration of activated carbon, Bioresour. Technol., 119, 234–240.
  • Haque, K. E. (1999). Microwave energy for mineral treatment processes—A brief review. Int. J. Miner. Process, 57, 1–24.
  • Haynes, W. M. (2014). CRC Handbook of Chemistry and Physics, 95th ed., CRC Press, Boca Raton.
  • Hutchings, G. J., and Grady, D. T. (1985a). Effect of drying conditions on carbon supported mercuric chloride catalysts, Appl. Catal., 16, 411–415.
  • Hutchings, G. J., and Grady, D. T. (1985b). Hydrochlorination of acetylene: The effect of mercuric chloride concentration on catalyst life, Appl. Catal., 16, 155–160.
  • Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., and Miles, N. J. (2002). Microwave heating applications in environmental engineering—A review, Resour. Conserv. Recycl., 34, 75–90.
  • Kim, T., Lee, J., and Lee, K. H. (2014). Microwave heating of carbon-based solid materials, Carbon Lett., 15, 15–24.
  • Liu, C., Liu, C. H., Peng, J. H., Zhang, L. B., Wang, S. X., and Ma, A. Y. (2018). Surface chemical characterization of deactivated low-level mercury catalysts for acetylene hydrochlorination, Chin. J. Chem. Eng., 26, 364–372.
  • Liu, B., Peng, J., Huang, D., Zhang, L., Hu, J., Zhuang, Z., Kong, D., Guo, S., Li, C., Zhang, S., and Xiao, S. (2010). Temperature rising characteristics of ammonium diurante in microwave fields, Nucl. Eng. Des., 240, 2710–2713.
  • Liu, C., Peng, J., Ma, A., Zhang, L., and Li, J. (2017). Study on non-isothermal kinetics of the thermal desorption of mercury from spent mercuric chloride catalyst, J. Hazard. Mater., 322, 325–333.
  • Liu, Q. S., Wang, P., Zhao, S. S., and Zhang, W. (2012). Treatment of an industrial chemical waste-water using a granular activated carbon adsorption-microwave regeneration process, J. Chem. Technol. Biotechnol., 87, 1004–1009.
  • Lu, D. (2015). Study on Deactivation of the Mercuric Chloride Catalyst, Beijing Institute of Clothing Technology, Beijing (in Chinese).
  • Ma, S., Jin, X., Yao, J., Cai, H., Li, R., and Deng, X. (2010). Characteristic change of activated carbon under microwave irradiation. 2010 International Conference on Digital Manufacturing and Automation 2010, 1, 379–382.
  • Ma, S. J., Zhou, X. W., Su, X. J., Mo, W., Yang, J. L., and Liu, P. (2009). A new practical method to determine the microwave energy absorption ability of materials, Miner. Eng., 22, 1154–1159.
  • Mao, H., Zhou, D., Hashisho, Z., Wang, S., Chen, H., and Wang, H. (2015). Constant power and constant temperature microwave regeneration of toluene and acetone loaded on microporous activated carbon from agricultural residue, J. Ind. Eng. Chem., 21, 516–525.
  • McGill, S. L., Walkiewicz, J. W., and Smyres, G. A. (1988). The effects of power level on the microwave heating of selected chemicals and minerals, Mat. Res. Soc. Proc. 124, 247–252.
  • Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., and Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials, Fuel Process Technol., 91, 1–8.
  • Metaxas, A. C., and Meredith, R. J. (1983). Industrial Microwave Heating, Peter Peregrinus Ltd, London.
  • Mingos, D. M. P., and Baghurst, D. R. (1991). Applications of microwave dielectric heating effects to synthetic problems in chemistry, Chem. Soc. Rev., 20, 1–47.
  • Pickles, C. A. (2004). Microwave heating behaviour of nickeliferous limonitic laterite ores, Miner. Eng., 17, 775–784.
  • Pickles, C. A. (2009). Microwaves in extractive metallurgy: Part 1 – Review of fundamentals, Miner. Eng., 22, 1102–1111.
  • Polaert, I., Estel, L., Huyghe, R., and Thomas, M. (2010). Adsorbents regeneration under microwave irradiation for dehydration and volatile organic compounds gas treatment, Chem. Eng. J., 162, 941–948.
  • Price, D. W., and Schmidt, P. S. (1998). VOC recovery through microwave regeneration of adsorbents: Process design studies, J. Air Waste Manag. Assoc., 48, 1135–1145.
  • Quan, X., Liu, X., Bo, L., Chen, S., Zhao, Y., and Cui, X. (2004). Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation, Water Res., 38, 4484–4490.
  • Reusz, J., Bathen, D., and Schmidt-Traub, H. (2002). Desorption by microwaves: Mechanisms of multicomponent mixtures, Chem. Eng. Technol., 25, 381–384.
  • Rodriguez, O., Padilla, I., Tayibi, H., and Lopez-Delgado, A. (2012). Concerns on liquid mercury and mercury-containing wastes: A review of the treatment technologies for the safe storage, J. Environ. Manage., 101, 197–205.
  • Salvador, F., Martin-Sanchez, N., Sanchez-Hernandez, R., Sanchez-Montero, M. J., and Izquierdo, C. (2015). Regeneration of carbonaceous adsorbents. Part I: Thermal regeneration, Microporous Mesoporous Mater., 202, 259–276.
  • Sedlar, M., Pavlin, M., Popovič, A., and Horvat, M. (2015). Temperature stability of mercury compounds in solid substrates, Open Chem., 13, 404–419.
  • Walkiewicz, J. W., Kazonich, G., and Mcgill, S. L. (1988). Microwave heating characteristics of selected minerals and compounds, Miner. Metall. Process, 5, 39–42.
  • Wang, F., Wang, L., Wang, J., Zhao, Y., Wang, Y., and Yang, D. (2014). Bimetallic Pd-K/Y-zeolite catalyst in acetylene hydrochlorination for PVC production, React. Kinet. Mech. Catal., 114, 725–734.
  • Xue, Z. H. (2011). Mercury pollution control of PVC production by calcium carbide method, China Chlor-Alkali, 2, 008 (in Chinese).
  • Zhang, H., Dai, B., Li, W., Wang, X., Zhang, J., Zhu, M., and Gu, J. (2014). Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au–Co(III)–Cu(II) catalysts, J. Catal., 316, 141–148.
  • Zhang, Y., Deng, X., and Bin, W. (2008). Technological progress in the production of mercuric chloride catalyst in China and the recycle of waste mercuric chloride catalyst in China, Polyvinyl Chloride, 10, 012 (in Chinese).
  • Zhang, X., Hayward, D. O., and Mingos, D. M. P. (2001). Microwave dielectric heating behavior of supported MoS2 and Pt catalysts, Ind. Eng. Chem. Res., 40, 2810–2817.
  • Zhang, J., Liu, N., Li, W., and Dai, B. (2011). Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts, Front. Chem. Sci. Eng., 5, 514–520.
  • Zhi, L., Li, Y., Tang, H., Liu, H., and Pei, W. (2015). Deactivation mechanism of low-mercury catalyst for acetylene hydrochlorination, Chem. React. Eng. Technol., 31, 343–351 (in Chinese).
  • Zhou, K., Jia, J., Li, C., Xu, H., Zhou, J., Luo, G., and Wei, F. (2015). A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes, Green Chem., 17, 356–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.