495
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Studies on oxidative coupling of methane using Sm2O3-based catalysts

, &
Pages 48-60 | Received 02 Jun 2017, Accepted 27 Apr 2018, Published online: 24 May 2018

References

  • Ahari, J. S., Sadeghi, M. T., and Zarrinpashne, S. (2011). Effects of operating parameters on oxidative coupling of methane over Na-W-Mn/SiO2 catalyst at elevated pressures, J. Nat. Gas Chem., 20, 204–213.
  • Alexiadis, V. I., Chaar, M., van Veen, A., Muhler, M., Thybaut, J. W., and Marin, G. B. (2016). Quantitative screening of an extended oxidative coupling of methane catalyst library, Appl. Catal. B-Environ., 199, 252–259.
  • Alexiadis, V. I., Thybaut, J. W., Kechagiopoulos, P. N., Chaar, M., Van Veen, A. C., Muhler, M., and Marin, G. B. (2014). Oxidative coupling of methane: Catalytic behaviour assessment via comprehensive microkinetic modelling, Appl. Catal. B-Environ., 150, 496–505.
  • Anshits, A. G., Kondratenko, E. V., Voskresenskaya, E. N., Kurteeva, L. I., and Pavlenko, N. I. (1998). The influence of O-2 on oxidative coupling of methane over oxide catalysts using N2O as oxidant, Catal. Today, 46, 211–216.
  • Arndt, S., Simon, U., Heitz, S., Berthold, A., Beck, B., Gorke, O., Epping, J. D., Otremba, T., Aksu, Y., Irran, E., Laugel, G., Driess, M., Schubert, H., and Schomacker, R. (2011). Li-doped MgO from different preparative routes for the oxidative coupling of methane, Top. Catal., 54, 1266–1285.
  • Bajus, M., and Back, M. H. (1998). Oxidative coupling of methane over a Sm/C and Mg/C catalysts using N2O as oxidant, Stud. Surf. Sci. Catal., 119, 289–293.
  • Balint, I., Miyazaki, A., Gingasu, D., and Papa, F. (2012). Relevance of the basicity of MO-Sm2O3 (M = Zn, Mg, Ca, Sr) mixed oxides for the efficiency of methane conversion to C-2(+) hydrocarbons, React. Kinet. Mech. Cat., 105, 5–11.
  • Branco, J. B., Ferreira, A. C., do Rego, A. M. B., Ferraria, A. M., Lopes, G., and Gasche, T. A. (2014). Oxidative coupling of methane over KCl-LnCl(3) eutectic molten salt catalysts, J. Mol. Liq., 191, 100–106.
  • Buyevskaya, O. V., and Baerns, M. (1994). Transient studies on oxygen activation on a Sm2O3 surface in the oxidative coupling of methane, Catal. Today, 21, 301–308.
  • Choudhary, V. R., Mulla, S. A. R., and Uphade, B. S. (1999). Oxidative coupling of methane over alkaline earth oxides deposited on commercial support precoated with rare earth oxides, Fuel, 78, 427–437.
  • Choudhary, V. R., and Rane, V. H. (1991). Acidity basicity of rare-earth-oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons, J. Catal., 130, 411–422.
  • Chu, C. Q., Zhao, Y. H., Li, S. G., and Sun, Y. H. (2016). Role of peroxides on La2O3 catalysts in oxidative coupling of methane (vol 118, pg 27954, 2014), J. Phys. Chem. C, 120, 9546–9546.
  • Ciambelli, P., Cimino, S., De Rossi, S., Faticanti, M., Lisi, L., Minelli, G., Pettiti, I., Porta, P., Russo, G., and Turco, M. (2000). AMnO(3) (A = La, Nd, Sm) and Sm1-xSrxMnO3 perovskites as combustion catalysts: Structural, redox and catalytic properties, Appl. Catal. B-Environ., 24, 243–253.
  • Dedov, A. G., Loktev, A. S., Moiseev, I. I., Aboukais, A., Lamonier, J. F., and Filimonov, I. N. (2003). Oxidative coupling of methane catalyzed unexpected synergistic effect of the by rare earth oxides oxide mixtures, Appl. Catal. A-Gen., 245, 209–220.
  • Elkins, T. W., and Hagelin-Weaver, H. E. (2013). Oxidative coupling of methane over unsupported and alumina-supported samaria catalysts, Appl. Catal. A-Gen., 454, 100–114.
  • Elkins, T. W., Neumann, B., Baumer, M., and Hagelin-Weaver, H. E. (2014). Effects of Li Doping on MgO-supported Sm2O3 and TbOx catalysts in the oxidative coupling of methane, ACS Catal., 4, 1972–1990.
  • Ferreira, A. C., Gasche, T. A., Leal, J. P., and Branco, J. B. (2017). Methane activation with nitrous oxide over bimetallic oxide Ca-lanthanide nanocatalysts, Mol. Catal., 443, 155–164.
  • Ferreira, V. J., Tavares, P., Figueiredo, J. L., and Faria, J. L. (2012). Effect of Mg, Ca, and Sr on CeO2 based catalysts for the oxidative coupling of methane: Investigation on the oxygen species responsible for catalytic performance, Ind. Eng. Chem. Res., 51, 10535–10541.
  • Fleischer, V., Littlewood, P., Parishan, S., and Schomacker, R. (2016a). Chemical looping as reactor concept for the oxidative coupling of methane over a Na2WO4/Mn/SiO2 catalyst, Chem. Eng. J., 306, 646–654.
  • Fleischer, V., Steuer, R., Parishan, S., and Schomacker, R. (2016b). Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments, J. Catal., 341, 91–103.
  • Gayko, G., Wolf, D., Kondratenko, E. V., and Baerns, M. (1998). Interaction of oxygen with pure and SrO-doped Nd2O3 catalysts for the oxidative coupling of methane: Study of work function changes, J. Catal., 178, 441–449.
  • Ghose, R., Hwang, H. T., and Varma, A. (2014). Oxidative coupling of methane using catalysts synthesized by solution combustion method: Catalyst optimization and kinetic studies, Appl. Catal. A-Gen., 472, 39–46.
  • Heiba, Z. K., Mohamed, M. B., and Fuess, H. (2013). Structural and magnetic properties of Sm2-xMnxO3 nanoparticles, Mater. Res. Bull., 48, 3750–3755.
  • Hinsen, W., and Baerns, M. (1983). Oxidative coupling of methane to C2-hydrocarbons in the presence of different catalysts, Chem. Ztg., 107, 223–226.
  • Hiyoshi, N., and Sato, K. (2016). Oxidative coupling of methane over Mn-Na2WO4/SiO2 catalyst with continuous supply of alkali chloride vapor, Fuel Process. Technol., 151, 148–154.
  • Hutchings, G. J., Scurrell, M. S., and Woodhouse, J. R. (1989a). Partial oxidation of methane over samarium and lanthanum oxides − A study of the reaction-mechanism, Catal. Today, 4 (3), 371–381.
  • Hutchings, G. J., Woodhouse, J. R., and Scurrell, M. S. (1989b). Partial oxidation of methane over oxide catalysts – Comments on the reaction-mechanism, J. Chem. Soc. Farad T 1, 85, 2507–2523.
  • Keller, G. E., and Bhasin, M. M. (1982). Synthesis of ethylene via oxidative coupling of methane.1. Determination of active catalysts, J. Catal., 73, 9–19.
  • Kiennemann, A., Kieffer, R., Kaddouri, A., Poix, P., and Rehspringer, J. L. (1990). Oxidative coupling of methane over SmLiO2, NdLiO2, LaLiO2 catalysts – Promoting effect of MgO and CaO, Stud. Surf. Sci. Catal., 55, 365–372.
  • Koirala, R., Buchel, R., Pratsinis, S. E., and Baiker, A. (2014). Oxidative coupling of methane on flame-made Mn-Na2WO4/SiO2: Influence of catalyst composition and reaction conditions, Appl. Catal. A-Gen., 484, 97–107.
  • Kondratenko, E. V., Maksimov, N. G., Selyutin, G. E., and Anshits, A. G. (1995). Oxidative coupling of methane over oxides of alkali-earth metals using N2O as oxidant, Catal. Today, 24, 273–275.
  • Kondratenko, E. V., Wolf, D., and Baerns, M. (1999). Influence of electronic properties of Na2O/CaO catalysts on their catalytic characteristics for the oxidative coupling of methane, Catal. Lett., 58, 217–223.
  • Korf, S. J., Roos, J. A., de Bruijn, N. A., van Ommen, J. G., and Ross, J. R. H. (1988). Oxidative coupling of methane over lithium doped magnesium oxide catalysts, Catal. Today, 2, 535–545.
  • Korf, S. J., Roos, J. A., Diphoorn, J. M., Veehof, R. H. J., Vanommen, J. G., and Ross, J. R. H. (1989). The selective oxidation of methane to ethane and ethylene over doped and un-doped rare-earth-oxides, Catal. Today, 4, (3 and 4), 279–292.
  • Kuo, Y., Behrendt, F., and Lerch, M. (2007). Effect of the specific surface area of Li/MgO catalysts in the oxidative coupling of methane, Z Phys. Chem., 221, 1017–1037.
  • Kus, S., Otremba, M., Torz, A., and Taniewski, M. (2002). Further evidence of responsibility of impurities in MgO for variability in its basicity and catalytic performance in oxidative coupling of methane, Fuel, 81, 1755–1760.
  • Liu, H. F., Wei, Y. Y., Caro, J., and Wang, H. H. (2010). Oxidative coupling of methane with high C-2 yield by using chlorinated perovskite Ba0.5Sr0.5Fe0.2Co0.8O3-delta as catalyst and N2O as oxidant, Chemcatchem, 2, 1539–1542.
  • Naccache, C. (1971). ESR study of species formed by reaction of O−, adsorbed on magnesium oxide with O2, CO and ethylene, Chem. Phys. Lett., 11, 323–325.
  • Neumann, B., Elkins, T. W., Gash, A. E., Hagelin-Weaver, H., and Baumer, M. (2015). Sol-gel preparation of samaria catalysts for the oxidative coupling of methane, Catal. Lett., 145, 1251–1261.
  • Noon, D., Seubsai, A., and Senkan, S. (2013). Oxidative coupling of methane by nanofiber catalysts, Chemcatchem, 5, 146–149.
  • Noon, D., Zohour, B., and Senkan, S. (2014). Oxidative coupling of methane with La2O3–CeO2 nanofiber fabrics: A reaction engineering study, J. Nat. Gas Sci. Eng., 18, 406–411.
  • Oh, S. C., Wu, Y. Q., Tran, D. T., Lee, I. C., Lei, Y., and Liu, D. X. (2016). Influences of cation and anion substitutions on oxidative coupling of methane over hydroxyapatite catalysts, Fuel, 167, 208–217.
  • Otsuka, K., Jinno, K., and Morikawa, A. (1985). The catalysts active and selective in oxidative coupling of methane, Chem. Lett., 14, 499–500.
  • Otsuka, K., and Nakajima, T. (1986). Partial oxidation of methane over rare-earth metal-oxides using N2O and O2 as oxidants, Inorg. Chim. Acta, 120, L27–L28.
  • Otsuka, K., and Nakajima, T. (1987). Oxidative coupling of methane over samarium oxides using N2O as the oxidant, J. Chem. Soc. Farad T 1, 83, 1315–1321.
  • Ozdemir, H., Oksuzomer, M. A. F., and Gurkaynak, M. A. (2014). Effect of the calcination temperature on Ni/MgAl2O4 catalyst structure and catalytic properties for partial oxidation of methane, Fuel, 116, 63–70.
  • Pak, S., and Lunsford, J. H. (1998). Thermal effects during the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts, Appl. Catal. A-Gen., 168, 131–137.
  • Papa, F., Luminita, P., Osiceanu, P., Birjega, R., Akane, M., and Balint, I. (2011). Acid-base properties of the active sites responsible for C-2(+) and CO2 formation over MO-Sm2O3 (M = Zn, Mg, Ca and Sr) mixed oxides in OCM reaction, J. Mol. Catal. A-Chem., 346, 46–54.
  • Ramachandra, A. M., Lu, Y., Ma, Y. H., Moser, W. R., and Dixon, A. G. (1996). Oxidative coupling of methane in porous Vycor membrane reactors, J. Membrane Sci., 116, 253–264.
  • Rane, V. H., Mulla, S. A. R., and Choudhary, V. R. (1998). Oxidative coupling of methane over alkaline earth promoted CeO2, Nd2O3 and Sm2O3 catalysts, Stud. Surf. Sci. Catal., 113, 1007–1013.
  • Rane, W. H., Chaudhari, S. T., and Choudhary, V. R. (2006). Comparison of the surface and catalytic properties of rare earth-promoted CaO catalysts in the oxidative coupling of methane, J. Chem. Technol. Biot., 81, 208–215.
  • Raouf, F., Taghizadeh, M., and Yousefi, M. (2013). Activity enhancement of Li/MgO catalysts by lithium chloride as a lithium precursor for the oxidative coupling of methane, React. Kinet. Mech. Cat., 110, 373–385.
  • Serres, T., Aquino, C., Mirodatos, C., and Schuurman, Y. (2015). Influence of the composition/texture of Mn-Na-W catalysts on the oxidative coupling of methane, Appl. Catal. A-Gen., 504, 509–518.
  • Simon, U., Arndt, S., Otremba, T., Schlingmann, T., Gorke, O., Dinse, K. P., Schomacker, R., and Schubert, H. (2012). Li/MgO with spin sensors as catalyst for the oxidative coupling of methane, Catal. Commun., 18, 132–136.
  • Song, J. J., Sun, Y. N., Ba, R. B., Huang, S. S., Zhao, Y. H., Zhang, J., Sun, Y. H., and Zhu, Y. (2015). Monodisperse Sr-La2O3 hybrid nanofibers for oxidative coupling of methane to synthesize C-2 hydrocarbons, Nanoscale, 7, 2260–2264.
  • Taniewski, M., Lachowicz, A., Skutil, K., and Czechowicz, D. (1996). The effect of dilution of the catalyst bed on its heat-transfer characteristics in oxidative coupling of methane, Chem. Eng. Sci., 51, 4271–4278.
  • Tong, Y. D., Rosynek, M. P., and Lunsford, J. H. (1989). Secondary reactions of methyl radicals with lanthanide oxides – Their role in the selective oxidation of methane, J. Phys. Chem. – US, 93, 2896–2898.
  • Voskresenskaya, E. N., Kurteeva, L. I., Pervyshina, G. G., and Anshits, A. G. (1995). Comparison of O-2 and N2O as oxidants for the oxidative coupling of methane over bi-containing oxide catalysts, Catal. Today, 24, 277–279.
  • Wang, K., Ji, S. F., Shi, X. J., and Tang, J. J. (2009). Autothermal oxidative coupling of methane on the SrCO3/Sm2O3 catalysts, Catal. Commun., 10, 807–810.
  • Yamashita, T., and Vannice, A. (1996). N2O decomposition over manganese oxides, J. Catal., 161, 254–262.
  • Yildiz, M., Aksu, Y., Simon, U., Otremba, T., Kailasam, K., Gobel, C., Girgsdies, F., Gorke, O., Rosowski, F., Thomas, A., Schomacker, R., and Arndt, S. (2016). Silica material variation for the MnxOy-Na2WO4/SiO2, Appl. Catal. A-Gen, 525, 168–179.
  • Yildiz, M., Simon, U., Otremba, T., Aksu, Y., Kailasam, K., Thomas, A., Schomacker, R., and Arndt, S. (2014). Support material variation for the MnxOy-Na2WO4/SiO2 catalyst., Catal. Today, 228, 5–14.
  • Zhou, X. P., Chao, Z. S., Weng, W. Z., Zhang, W. D., Wang, S. J., Wan, H. L., and Tsai, K. R. (1994). The oxidative coupling of methane and the activation of molecular O2 on CeO2/BaF2, Catal. Lett., 29, 177–188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.