334
Views
12
CrossRef citations to date
0
Altmetric
Articles

Chromium (VI) removal from water using starch coated nanoscale zerovalent iron particles supported on activated carbon

, , , , &
Pages 708-715 | Received 03 Dec 2017, Accepted 05 Sep 2018, Published online: 08 Oct 2018

References

  • Chen, D., Yang, K., Wang, H., Zhou, J., and Zhang, H. (2015). Cr(VI) removal by combined redox reactions and adsorption using pectin-stabilized nanoscale zero-valent iron for simulated chromium contaminated water, RSC Adv., 5, 65068–65073.
  • Dai, Y., Hu, Y., Jiang, B., Zou, J., Tian, G., and Fu, H. (2016). Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction, J. Hazard Mater., 309, 249–258.
  • Dima, J. B., Sequeiros, C., and Zaritzky, N. E. (2015). Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes, Chemosphere., 141, 100–111.
  • Dong, H., He, Q., Zeng, G., Tang, L., Zhang, C., Xie, Y., Zeng, Y., Zhao, F., and Wu, Y. (2016). Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry, J. Colloid Interface Sci., 471, 7–13.
  • Dong, H., Deng, J., Xie, Y., Zhang, C., Jiang, Z., Cheng, Y., Hou, K., and Zeng, G. (2017). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution, J. Hazard. Mater., 332, 79–86.
  • Fajardo, C., Gil-Díaz, M., Costa, G., Alonso, J., Guerrero, A. M., Nande, M., Lobo, M. C., and Martín, M. (2015). Residual impact of aged nZVI on heavy metal-polluted soils, Sci. Total Environ., 535, 79–84.
  • Fu, R., Yang, Y., Xu, Z., Zhang, X., Guo, X., and Bi, D. (2015). The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI), Chemosphere., 138, 726–734.
  • Hu, B., Chen, G., Jin, C., Hu, J., Huang, C., Sheng, J., Sheng, G., Ma, J., and Huang, Y. (2017). Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron, J. Hazard Mater., 336, 214–221.
  • Huang, L., Zhou, S., Jin, F., Huang, J., and Bao, N. (2014). Characterization and mechanism analysis of activated carbon fiber felt-stabilized nanoscale zero-valent iron for the removal of Cr(VI) from aqueous solution, Colloid Surf A: Physicochem. Eng. Aspect., 447, 59–66.
  • Husnain, A., Qazi, I. A., Khaliq, W., and Arshad, M. (2016). Immobilization in cement mortar of chromium removed from water using Titania nanoparticles, J. Environ. Manage., 172, 10–17.
  • Jiemvarangkul, P., Zhang, W., and Lien, H. (2011). Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media, Chem. Eng. J., 170, 482–491.
  • Lv, X., Xue, X., Jiang, G., Wu, D., Sheng, T., Zhou, H., and Xu, X. (2014). Nanoscale Zero-Valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution, J Colloid Interface Sci., 417, 51–59.
  • Mosaferi, M., Nemati, S., Khataee, A., Nasseri, S., and Hashemi, A. A. (2014). Removal of arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose, J. Environ Health Sci Eng., 12, 74
  • Nahuel Montesinos, V., Quici, N., Beatriz Halac, E., Leyva, A. G., Custo, G., Bengio, S., Zampieri, G., and Litter, M. I. (2014). Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)–Cr(III) passive outer layer structure, Chem. Eng. J., 244, 569–575.
  • Peng, Z., Xiong, C., Wang, W., Tan, F., Xu, Y., Wang, X., and Qiao, X. (2017). Facile modification of nanoscale zero-valent iron with high stability for Cr(VI) remediation, Sci. Total Environ., 596–597, 266–273.
  • Qian, L., Zhang, W., Yan, J., Han, L., Chen, Y., Ouyang, D., and Chen, M. (2017). Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal, Environ. Pollut., 223, 153–160.
  • Wang, J., Ji, B., Shu, Y., Chen, W., Zhu, L., and Chen, F. (2018). Cr (VI) removal from aqueous solution using starch and sodium carboxymethyl cellulose-coated Fe and Fe/Ni nanoparticles, Pol. J. Environ. Stud., 27, 2785–2792.
  • Wen, T., Fan, Q., Tan, X., Chen, Y., Chen, C., Xu, A., and Wang, X. (2016). A core–shell structure of polyaniline coated protonic titanate nanobelt composites for both Cr(vi) and humic acid removal, Polym. Chem. Chemistry., 7, 785–794.
  • Wu, J., Yi, Y., Li, Y., Fang, Z., and Tsang, E. P. (2016). Excellently reactive Ni/Fe bimetallic catalyst supported by biochar for the remediation of decabromodiphenyl contaminated soil: Reactivity, mechanism, pathways and reducing secondary risks, J Hazard Mater., 320, 341–349.
  • Wu, L., Liao, L., Lv, G., and Qin, F. (2015). Stability and PH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal, J. Contam. Hydrol., 179, 1–9.
  • Yu, S., Wang, X., Pang, H., Zhang, R., Song, W., Fu, D., Hayat, T., and Wang, X. (2018). Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review, Chem. Eng. J., 333, 343–360.
  • Zhang, S., Zhao, Y., Yang, J., Zhang, J., and Zheng, C. (2018). Fe-modified MnO x/TiO 2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas, Chem. Eng. J., 618.
  • Zhou, X., Lv, B., Zhou, Z., Li, W., and Jing, G. (2015). Evaluation of highly active nanoscale zero-valent iron coupled with ultrasound for chromium(VI) removal, Chem. Eng. J., 281, 155–163.
  • Zhu, F., Li, L., Ren, W., Deng, X., and Liu, T. (2017). Effect of PH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material, Environ. Pollut., 227, 444–450.
  • Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., and Wang, X. (2016). Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review, Environ. Sci. Technol., 50, 7290–7304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.