180
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Effect of a sweeping air stream and gas–phase aspect ratio of an isothermal Stefan diffusion column on the experimental estimation of binary gas diffusivities

&

References

  • Alkire, R. C., Reiser, D. B., and Sani, R. L. (1984). Effect of fluid flow on removal of dissolution products from small cavities, J. Electrochem. Soc. 131, 2795–2800. doi: 10.1149/1.2115410
  • Altshuller, A. P., and Cohen, I. R. (1960). Application of diffusion cells to the production of known concentrations of gaseous hydrocarbons, Anal. Chem. 32, 802–810. doi: 10.1021/ac60163a021
  • Arnold, J. H. (1930). Studies in diffusion: I. Estimation of diffusivities in gaseous systems, Ind. Eng. Chem. 22, 1091–1095. doi: 10.1021/ie50250a023
  • Arnold, J. H. (1944). Studies in diffusion: III. Unsteady-state vaporization and absorption, Trans. Am. Inst. Chem. Eng. 40, 361–378.
  • Ben Aim, R., Eggarter, P., and Krasuk, J.-H. (1967). Détermination de diffusivités par la méthode du capillaire. Influence de l’écoulement du fluide autour du capillaire, Chimie et industrie-Génie Chimique 97, 1638–1645.
  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (2007). Transport Phenomena, revised 2nd ed., John Wiley & Sons, Inc., New York City, NY.
  • Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, John Wiley & Sons, Inc., New York City, NY.
  • Bozeman, J. D., and Dalton, C. (1973). Numerical study of viscous flow in a cavity, Comput. Phys. 12, 348–363. doi: 10.1016/0021-9991(73)90157-5
  • Broda, E. (1983). Ludwig Boltzmann: Man, Physicist, Philosopher, Gay, L., and Broda, E., German-to-English translators, Ox Bow Press, Woodbridge, CT.
  • Burggraf, O. R. (1966). Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech. 24, 113–151. doi: 10.1017/S0022112066000545
  • Chang, H. N., Ryu, H. W., Park, D. H., Park, Y. S., and Park, J. K. (1987). Effect of external laminar channel flow on mass transfer in a cavity, Int. J. Heat Mass Transf. 30, 2137–2149. doi: 10.1016/0017-9310(87)90092-5
  • Chapman, S., and Cowling, T. G. (1953). The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, 2nd ed. (reprinted), Cambridge University Press, Cambridge, England. (Text sections pertinent to this study include Chapters 10 and 14, the history of the kinetic theory of gases, and a classified list of relevant theoretical papers.)
  • Chilukuri, R., and Middleman, S. (1983). Circulation, diffusion, and reaction within a liquid trapped in a cavity, Chem. Eng. Commun. 22, 127–138. doi: 10.1080/00986448308940051
  • Crepeau, J. (2007). Josef Stefan: His life and legacy in the thermal sciences, Exp. Thermal Fluid Sci. 31, 795–803. doi: 10.1016/j.expthermflusci.2006.08.005
  • Crider, W. L. (1956). The use of diffusion coefficients in the measurement of vapor pressure, J. Am. Chem. Soc. 78, 924–925. doi: 10.1021/ja01586a015
  • Cussler, E. L. (2009). Diffusion: Mass Transfer in Fluid Systems, 3rd ed., Cambridge University Press, Cambridge, England.
  • Duda, J. L., and Vrentas, J. S. (1971). Heat transfer in a cylindrical cavity, J. Fluid Mech. 45, 261–279. doi: 10.1017/S0022112071000041
  • Fang, L. C., Nicolaou, D., and Cleaver, J. W. (1999). Transient removal of a contaminated fluid from a cavity, Int. J. Heat Fluid Flow 20, 605–613. doi: 10.1016/S0142-727X(99)00050-8
  • Fang, L.-C., Nicolaou, D., and Cleaver, J. W. (2003). Numerical simulation of time-dependent hydrodynamic removal of a contaminated fluid from a cavity, Int. J. Numer. Meth. Fluids 42, 1087–1103. doi: 10.1002/fld.579
  • Fuller, E. N., Schettler, P. D., and Giddings, J. C. (1966). A new method for prediction of binary gas-phase diffusion coefficients, Ind. Eng. Chem. 58, 18–27. doi: 10.1021/ie50677a007
  • Gilliland, E. R. (1934). Diffusion coefficients in gaseous systems, Ind. Eng. Chem. 26, 681–685. doi: 10.1021/ie50294a020
  • Goryunova, N. A., and Kuvshinskiĭ, E. V. (1948). Determination of the coefficients of diffusion in air of vapors of cyclohexane, chloroform, and acetone, Zhurnal Tekhnicheskoĭ Fiziki 18, 1421–1425. [A copy of the original Russian article was obtained through the Automatic Document Delivery Service (https://autodoc.fiz-karlsruhe.de) of the Fachinformationszentrum Karlsruhe (FIZ Karlsruhe-Leibniz Institute for Information Infrastructure), Eggenstein-Leopoldshafen, Germany (www.fiz-karlsruhe.de).]
  • Green, D. W., and Perry, R. H. (Eds.) (2008). Perry’s Chemical Engineers’ Handbook, 8th ed., The McGraw-Hill Companies, Inc., New York City, NY.
  • Heaton, C. J. (2008). On the appearance of Moffatt eddies in viscous cavity flow as the aspect ratio varies, Phys. Fluids 20, 103102-1–103102-11. doi: 10.1063/1.2994750
  • Heinzelmann, F. J., Wasan, D. T., and Wilke, C. R. (1965). Concentration profiles in a Stefan diffusion tube, Ind. Eng. Chem. Fund. 4, 55–61. doi: 10.1021/i160013a009
  • Himmelblau, D. M., and Riggs, J. B. (2004). Basic Principles and Calculations in Chemical Engineering, 7th ed., Prentice Hall Professional Technical Reference, Upper Saddle River, NJ.
  • Holman, J. P. (2010). Heat Transfer, 10th ed., The McGraw-Hill Companies, Inc., New York City, NY.
  • Horner, M., Metcalfe, G., Wiggins, S., and Ottino, J. M. (2002). Transport enhancement mechanisms in open cavities, J. Fluid Mech. 452, 199–229. doi: 10.1017/S0022112001006917
  • Iwatsu, R., Ishii, K., Kawamura, T., Kuwahara, K., and Hyun, J. M. (1989). Numerical simulation of three-dimensional flow structure in a driven cavity, Fluid Dyn. Res. 5, 173–189. doi: 10.1016/0169-5983(89)90020-8
  • Jarrett, E. L., and Sweeney, T. L. (1967). Mass transfer in rectangular cavities, AIChE J. 13, 797–800. doi: 10.1002/aic.690130438
  • Kang, I. S., and Chang, H. N. (1982). The effect of turbulence promoters on mass transfer—Numerical analysis and flow visualization, Int. J. Heat Mass Transf. 25, 1167–1181. doi: 10.1016/0017-9310(82)90211-3
  • Karaiskakis, G., and Gavril, D. (2004). Determination of diffusion coefficients by gas chromatography, J. Chromatogr. A 1037, 147–189. doi: 10.1016/j.chroma.2004.01.015
  • Khalid, K., Kahn, R. A., and Zain, S. M. (2012). Determination of diffusion coefficients and activation energy of selected organic liquids using reversed-flow gas chromatographic technique, Sains Malaysiana 41, 1109–1116. Retrieved from http://www.ukm.my/jsm/malay_journals/jilid41bil9_2012/Jilid41Bil9_2012ms1109-1116.html
  • Kimpton, D. D., and Wall, F. T. (1952). Determination of diffusion coefficients from rates of evaporation, J. Phys. Chem. 56, 715–717. doi: 10.1021/j150498a013
  • Koseff, J. R., and Street, R. L. (1984a). Visualization studies of a shear driven three-dimensional recirculating flow, J. Fluids Eng. 106, 21–29. doi: 10.1115/1.3242393
  • Koseff, J. R., and Street, R. L. (1984b). On end wall effects in a lid-driven cavity flow, J. Fluids Eng. 106, 385–389. doi: 10.1115/1.3243135
  • Koseff, J. R., and Street, R. L. (1984c). The lid-driven cavity flow: A synthesis of qualitative and quantitative observations, J. Fluids Eng. 106, 390–398. doi: 10.1115/1.3243136
  • Lee, C. Y., and Wilke, C. R. (1954). Measurements of vapor diffusion coefficient, Ind. Eng. Chem. 46, 2381–2387. doi: 10.1021/ie50539a046
  • Lide, D. R. (Ed.) (2004). CRC Handbook of Chemistry and Physics, 85th ed, CRC Press, Boca Ratón, FL.
  • Lugg, G. A. (1968). Diffusion coefficients of some organic and other vapors in air, Anal. Chem. 40, 1072–1077. doi: 10.1021/ac60263a006
  • Markham, B. L., and Rosenberger, F. (1980). Velocity and concentration distribution in a Stefan diffusion tube, Chem. Eng. Commun. 5, 287–298. doi: 10.1080/00986448008935970
  • Marrero, T. R., and Mason, E. A. (1972). Gaseous diffusion coefficients, J. Phys. Chem. Ref. Data 1, 3–118. doi: 10.1063/1.3253094
  • Marrero, T. R., and Mason, E. A. (1973). Correlation and prediction of gaseous diffusion coefficients, AIChE J. 19, 498–503. doi: 10.1002/aic.690190312
  • Mato, F., and Bueno, J. L. (1977). Medida de coeficientes de difusión molecular. Sistemas binarios en fase gaseosa. II. Método de presión variable, Anales de Química, Real Sociedad Española de Física y Química 73, 114–119.
  • McBain, G. D., Suehrcke, H., and Harris, J. A. (2000). Evaporation from an open cylinder, Int. J. Heat Mass Transf. 43, 2117–2128. doi: 10.1016/S0017-9310(99)00284-7
  • Medina, J. L., and Ramírez, C. A. (2016). Theoretical and experimental estimation of binary gas diffusivities in a nonisothermal Stefan diffusion column, Chem. Eng. Commun. 203, 1625–1640. doi: 10.1080/00986445.2016.1223059
  • Mehta, U. B., and Lavan, Z. (1969). Flow in a two-dimensional channel with a rectangular cavity, J. Appl. Mech. 36, 897–901. doi: 10.1115/1.3564799
  • Meyer, J. P., and Kostin, M. D. (1975). Circulation phenomena in Stefan diffusion, Int. J. Heat Mass Transf. 18, 1293–1297. doi: 10.1016/0017-9310(75)90239-2
  • Mills, A. F., and Chang, B. H. (2013). Two-dimensional diffusion in a Stefan tube: The classical approach, Chem. Eng. Sci. 90, 130–136. doi: 10.1016/j.ces.2012.12.018
  • Mills, R. D. (1965). Numerical solutions of the viscous flow equations for a class of closed flows, J. R. Aeronaut. Soc. 69, 714–718. doi: 10.1017/S0368393100081463
  • Mitrovic, J. (1996). Remarks upon the contribution of J. Stefan to the understanding of diffusion processes, Int. J. Heat Mass Transf. 39, 218–220. doi: 10.1016/S0017-9310(96)85019-8
  • Mitrovic, J. (2012a). Josef Stefan and his evaporation-diffusion tube—The Stefan diffusion problem, Chem. Eng. Sci. 75, 279–281. doi: 10.1016/j.ces.2012.03.034
  • Mitrovic, J. (2012b). Corrigendum to “Josef Stefan and his evaporation-diffusion tube—The Stefan diffusion problem” [Chem. Eng. Sci. 75 (2012) 279-281], Chem. Eng. Sci. 80, 173. doi: 10.1016/j.ces.2012.06.046
  • Mitrovic, J. (2013). Jožef Stefan and the diffusion phenomena, In Jožef Stefan: His Scientific Legacy on the 175th Anniversary of His Birth, Crepeau, J. C., Ed., 82–136, Bentham Science Publishers, Sharjah, United Arab Emirates. doi: 10.2174/97816080547701130101
  • Moffatt, H. K. (1964). Viscous and resistive eddies near a sharp corner, J. Fluid Mech. 18, 1–18. doi: 10.1017/S0022112064000015
  • Mohammad, H. H., Zain, S. M., Khan, R. A., and Khalid, K. (2014). Establishment of physicochemical measurements of water polluting substances via flow perturbation gas chromatography, Sains Malaysiana 43, 1915–1925. Retrieved from: http://www.ukm.my/jsm/malay_journals/jilid43bil12_2014/Jilid43Bil12_2014ms1915-1925.html
  • Nallasamy, M., and Krishna Prasad, K. (1977). On cavity flow at high Reynolds numbers, J. Fluid Mech. 79, 391–414. doi: 10.1017/S0022112077000214
  • Neufeld, P. D., Janzen, A. R., and Aziz, R. A. (1972). Empirical equations to calculate 16 of the transport collision integrals Ω(l,s)* for the Lennard-Jones (12-6) potential, J. Chem. Phys. 57, 1100–1102. doi: 10.1063/1.1678363
  • Núñez, G. A., and Sparrow, E. M. (1988). Models and solutions for isothermal and nonisothermal evaporation from a partially filled tube, Int. J. Heat Mass Transf. 31, 461–477. doi: 10.1016/0017-9310(88)90028-2
  • O’Brien, V. (1972). Closed streamlines associated with channel flow over a cavity, Phys. Fluids 15, 2089–2097. doi: 10.1063/1.1693840
  • Occhialini, J. M., and Higdon, J. J. L. (1992). Convective mass transport from rectangular cavities in viscous flow, J. Electrochem. Soc. 139, 2845–2855. doi: 10.1149/1.2068991
  • Pan, F., and Acrivos, A. (1967). Steady flows in rectangular cavities, J. Fluid Mech. 28, 643–655. doi: 10.1017/S002211206700237X
  • Poling, B. E., Prausnitz, J. M., and O’Connell, J. P. (2001). The Properties of Gases and Liquids, 5th ed., The McGraw-Hill Companies, Inc., New York City, NY.
  • Pommersheim, J. M., and Ranck, B. A. (1973). Measurement of gaseous diffusion coefficients using the Stefan cell, Ind. Eng. Chem. Fund. 12, 246–250. doi: 10.1021/i160046a019
  • Pozrikidis, C. (1994). Shear flow over a plane wall with an axisymmetric cavity or a circular orifice of finite thickness, Phys. Fluids 6, 68–79. doi: 10.1063/1.868046
  • Prata, A. T., and Sparrow, E. M. (1985). Diffusion-driven nonisothermal evaporation, J. Heat Transfer 107, 239–242. doi: 10.1115/1.3247384
  • Prata, A. T., and Sparrow, E. M. (1986). Evaporation of water from a partially filled, cylindrical container to a forced convection air flow, Int. J. Heat Mass Transf. 29, 539–547. doi: 10.1016/0017-9310(86)90087-6
  • Pryde, J. A., and Pryde, E. A. (1967). A simple quantitative diffusion experiment, Phys. Educ. 2, 311–314. doi: 10.1088/0031-9120/2/6/001
  • Rao, S. S., and Bennett, C. O. (1966). Radial effects in a Stefan diffusion tube, Ind. Eng. Chem. Fund. 5, 573–575. doi: 10.1021/i160020a027
  • Richardson, J. F. (1959). The evaporation of two-component liquid mixtures, Chem. Eng. Sci. 10, 234–242. doi: 10.1016/0009-2509(59)80058-0
  • Schlichting, H. (1955). Boundary Layer Theory, 1st English Edition, Kestin, J., German-to-English translator, Pergamon Press Ltd., London, England.
  • Schwertz, F. A., and Brow, J. E. (1951). Diffusivity of water vapor in some common gases, J. Chem. Phys. 19, 640–646. doi: 10.1063/1.1748306
  • Shankar, P. N. (1993). The eddy structure in Stokes flow in a cavity, J. Fluid Mech. 250, 371–383. doi: 10.1017/S0022112093001491
  • Shankar, P. N., and Deshpande, M. D. (2000). Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech. 32, 93–136. doi: 10.1146/annurev.fluid.32.1.93
  • Shen, C., and Floryan, J. M. (1985). Low Reynolds number flow over cavities, Phys. Fluids 28, 3191–3202. doi: 10.1063/1.865366
  • Slattery, J. C., and Mhetar, V. R. (1997). Unsteady-state evaporation and the measurement of a binary diffusion coefficient, Chem. Eng. Sci. 52, 1511–1515. doi: 10.1016/S0009-2509(96)00507-6
  • Stefan, J. (1871). Über das Gleichgewicht und die Bewegung, insbesondere die Diffusion von Gasgemengen, Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften Wien, 63(Abteilung II), 63–124. Retrieved from http://www.zobodat.at/publikation_series.php?id=7341
  • Stefan, J. (1890). Ueber die Verdampfung und die Auflösung als Vorgänge der Diffusion, Ann. Phys. Chem. Neue Folge, 41, 725–747. doi: 10.1002/andp.18902771206
  • Strnad, J. (2011). Jožef Stefan, master of transport phenomena, Europhys. News 42, 17–20. doi: 10.1051/epn/2011201
  • Tighe, S., and Middleman, S. (1985). An experimental study of convection-aided removal of a contaminant from a cavity in a surface, Chem. Eng. Commun. 33, 149–157. doi: 10.1080/00986448508911166
  • Whitaker, S. (1991). Role of the species momentum equation in the analysis of the Stefan diffusion tube, Ind. Eng. Chem. Res. 30, 978–983. doi: 10.1021/ie00053a021
  • Wilke, C. R., and Lee, C. Y. (1955). Estimation of diffusion coefficients for gases and vapors, Ind. Eng. Chem. 47, 1253–1257. doi: 10.1021/ie50546a056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.