196
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Heterogeneous esterification kinetics of isopropyl oleate synthesis under non-ionizing excitation using nano-anatase imbued mesoporous catalyst

& ORCID Icon

References

  • Aafaqi, R., Mohamed, A. R., and Bhatia, S. (2004). Kinetics of esterification of palmitic acid with isopropanol using p-toluene sulfonic acid and zinc ethanoate supported over silica gel as catalysts, J. Chem. Technol. Biotechnol. 79, 1127–1134.
  • Asfour, A. A. (1985). Diffusion: Mass transfer in fluid systems by EL Cussler, Cambridge University Press, AIChE J. 31, 523.
  • Chakraborty, R., and Das, S. K. (2012). Optimization of biodiesel synthesis from waste frying soybean oil using fish Scale-Supported Ni catalyst, Ind. Eng. Chem. Res. 51, 8404–8414.
  • Chakraborty, R., Das, S., and Bhattacharjee, S. K. (2015). Optimization of biodiesel production from Indian mustard oil by biological tri-calcium phosphate catalyst derived from turkey bone ash, Clean Techn. Environ. Policy Environ. 17, 455–463.
  • Chakraborty, R., and Mandal, E. (2015). Fast and energy efficient glycerol esterification with lauric acid by near and far-infrared irradiation: Taguchi optimization and kinetics evaluation, J. Taiwan Inst. Chem. Eng. 50, 93–99.
  • Chakraborty, R., Mukhopadhyay, P., and Kumar, B. (2016). Optimal biodiesel-additive synthesis under infrared excitation using pork bone supported-Sb catalyst: Engine performance and emission analyses, Energy Convers Manage. 126, 32–41.
  • Chakraborty, R., and Roy Chowdhury, D. (2014). Optimization of biological-hydroxyapatite supported iron catalyzed methyl oleate synthesis using response surface methodology, J. Taiwan Inst. Chem. Eng. 45, 92–100.
  • Dey, S., Santra, S., Midya, A., Guha, P. K., and Ray, S. K. (2017). Synthesis of CuxNi(1-x)O coral like nanostructures and its application in design of re-usable toxic heavy metal ion sensor based on adsorption mediated electrochemical technique, Environ. Sci: Nano 4, 191–202.
  • do Nascimento, L. A. S., Tito, L. M. Z., Angelica, R. S., da Costa, C. E. F., Zamian, J. R., and da Rocha Filho, G. N. (2011). Esterification of oleic acid over solid acid catalysts prepared from amazon flint kaolin, Appl. Catal. B 101, 495–503.
  • Essamlali, Y., Larzek, M., Essaid, B., and Zahouily, M. (2017). Natural phosphate supported titania as a novel solid acid catalyst for oleic acid esterification, Ind. Eng. Chem. Res. 56, 5821–5832.
  • Gao, X., Bare, S. R., Fierro, J. L. G., Banares, M. A., and Wachs, I. E. (1998). Preparation and in-situ Spectroscopic characterization of molecularly dispersed titanium oxide on silica, J. Phys. Chem. B 102, 5653–5666.
  • Garcia, T., Coteron, A., Martinez, M., and Aracil, J. (1996). Kinetic modelling Of esterification reactions catalysed by immobilized lipases, Chem. Eng. Sci. 51, 2841–2846.
  • Ghosh, S., Das, R., and Naskar, M. K. (2016). Morphologically tuned aluminum hydrous oxides and their calcined products, J. Am. Ceram. Soc. 99, 2273–2282.
  • Hajamini, Z., Sobati, M. A., Shahhosseini, S., and Ghobadian, B. (2016). Waste fish oil (WFO) esterification catalyzed by sulfonated activated carbon under ultrasound irradiation, Appl. Therm. Eng. 94, 1–10.
  • Hanh, H. D., The Dong, N., Okitsu, K., Nishimura, R., and Maeda, Y. (2009). Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition, Renew. Energy 34, 780–783.
  • Hashemzehi, M., Saghatoleslami, N., and Nayebzadeh, H. (2017). Microwave-Assisted solution combustion synthesis of Spinel-Type mixed oxides for esterification reaction, Chem Eng. Commun. 204, 415–423.
  • Jirátová, K., Kovanda, F., Balabánová, J., Koloušek, D., Klegová, A., Pacultová, K., and Obalová, L. (2017). Cobalt oxide catalysts supported on CeO2–TiO2 for ethanol oxidation and N2O decomposition, Reac. Kinet. Mech. Cat. 121, 121–139.
  • Karan, P., Mukhopadhyay, P., and Chakraborty, R. (2017). Intensification of monostearin (phase change material) synthesis in infrared radiated rotating reactor: Optimization and heterogeneous kinetics, Energy Convers Manage. 138, 577–586.
  • Kominami, H., Kalo, J., and Takada, Y. (1997). Novel synthesis of microcrystalline titanium (IV) oxide having high thermal stability and ultra-high photocatalytic activity: thermal decomposition of titanium (IV) alkoxide in organic solvents, Catal. Lett. 46, 235–240.
  • Lamba, R., Kumar, S., and Sarkar, S. (2018). Esterification of decanoic acid with methanol using amberlyst 15: Reaction kinetics, Chem. Eng. Commun. 10, 1–4.
  • Li, K. T., and Wang, C. K. (2012). Esterification of lactic acid over TiO2.Al2O3 catalysts, Appl. Catal. A 433–434, 275–279.
  • Liang, G., He, L., Cheng, H., Li, W., Li, X., Zhang, C., Yu, Y., and Zhao, F. (2014). The hydrogenation/dehydrogenation activity of supported Ni catalysts and their effect on hexitols selectivity in hydrolytic hydrogenation of cellulose, J. Catal. 309, 468–476.
  • Mahata, S., Mondal, B., Mahata, S. S., Usha, K., Mandal, N., and Mukherjee, K. (2015). Chemical modification of titanium isopropoxide for producing stable dispersion of titania nano-particles, Mater. Chem. Phys. 151, 267–274.
  • Marchetti, J. M., and Errazu, A. F. (2008). Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid, Fuel 87, 3477–3480.
  • Mitsionis, A., Vaimakis, T., Trapalis, C., Todorova, N., Bahnemann, D., and Dillert, R. (2011). Hydroxyapatite/titanium dioxide nanocomposites for controlled photocatalytic NO oxidation, Appl. Catal. B 106, 398–404.
  • Moravec, P., Smol´Ik, J., and Levdansky, V. V. (2001). Preparation of TiO2 fine particles by thermal decomposition of titanium tetraisopropoxide vapour, J. Mater. Sci. 20, 2033–2037.
  • Moritz, P., Faessler, P., Scala, C., and Bailer, O. (2006). Method for the esterification of a fatty acid, US 7,091,367 B2.
  • Moser, B. R., Sharma, B. K., Doll, K. M., and Erhan, S. Z. (2007). Diesters from oleic acid: Synthesis, low temperature properties, and oxidation stability, J. Amer. Oil Chem. Soc. 84, 675–680.
  • Osatiashtiani, A., Durndell, L. J., Manayil, J. C., Lee, A. F., and Wilson, K. (2016). Influence of alkyl chain length on sulfated zirconia catalysed batch and continuous esterification of carboxylic acids by light alcohols, Green Chem. 18, 5529–5535.
  • Palcheva, R., Dimitrov, L., Tyuliev, G., Spojakina, A., and Jiratova, K. (2013). TiO2 nanotubes supported NiW hydrodesulphurization catalysts: characterization and activity, Appl. Surf. Sci. 265, 309–316.
  • Pradhan, P., Chakraborty, S., and Chakraborty, R. (2016). Optimization of infrared radiated fast and energy-efficient biodiesel production from waste mustard oil catalyzed by amberlyst 15: Engine performance and emission quality assessments, Fuel 173, 60–68.
  • Resende, N. S., Nele, M., and Salim, V. M. M. (2006). Effects of anion substitution on the acid properties of hydroxyapatite, Thermochim Acta 451, 16–21.
  • Said, A. E.-A. A., El-Wahab, M. M. M. A., and Alian, A. M. (2016). Selective oxidation of methanol to formaldehyde over active molybdenum oxide supported on hydroxyapatite catalysts, Catal. Lett. 146, 82–90.
  • Sandra, Y. G., Luis, A. R., and Natalia, S. (2013). Comparison of glycerol ketals, glycerol acetates and branched alcohol-derived fatty esters as cold-flow improvers for palm biodiesel, Fuel 108, 709–714.
  • Sharma, M., Toor, A. P., and Wanchoo, R. K. (2016). Esterification of pentanoic acid with 1-propanol by sulfonated cation exchange resin: Experimental and kinetic studies, Chem. Eng. Commun. 203, 801–808.
  • Singh, N., Chakraborty, R., and Gupta, R. K. (2018). Mutton bone derived hydroxyapatite supported TiO2 nanoparticles for sustainable photocatalytic applications, J. Environ. Chem. Eng. 6, 459–467.
  • Sohn, J. R., Kim, J. G., Kwon, T. D., and Park, E. H. (2002). Characterization of titanium sulfate supported on zirconia and activity for acid catalysis, Langmuir 18, 1666–1673.
  • Srilatha, K., Lingaiah, N., Sai, Prasad, P. S., Prabhavathi Devi, B. L. A., and Prasad, R. B. N. (2011). Kinetics of the esterification of palmitic acid with methanol catalyzed by 12-tungstophosphoric acid supported on ZrO2, Reac. Kinet. Mech. Cat. 104, 211–226.
  • Stambolova, I., Shipochka, M., Blaskov, V., Loukanov, A., and Vassilev, S. (2012). Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye, J. Photochem. Photobiol. 117, 19–26.
  • Vieville, C., Mouloungui, Z., and Gaset, A. (1995). Synthesis and analysis of the C1-C18 alkyl oleates, Chem. Phys. Lipids 75, 101–108.
  • Wang, W., Zhu, D., Shen, Z., Peng, J., Luo, J., and Liu, X. (2016). One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity, Ind. Eng. Chem. Res. 55, 6373–6383.
  • Wang, Z., and Yu, S. (2016). Synthesis of high-stability acidic Ce3+ (La3+ or Sm3+) ∼β/Al-MCM- 41 and the catalytic performance for the esterification of oleic acid, Catal. Commun. 84, 108–111.
  • Yalçinyuva, T., Deligöz, H., Boz, İ., and Gürkaynak, M. A. (2008). Kinetics and mechanism of myristic acid and isopropyl alcohol esterification reaction with homogeneous and heterogeneous catalysts, Int. J. Chem. Kinet. 40, 136–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.