416
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and characterization of high-quality activated carbons from hard-shelled agricultural wastes mixture by zinc chloride activation

, &
Pages 888-897 | Received 27 May 2018, Accepted 02 Oct 2018, Published online: 05 Nov 2018

References

  • Al-Lagtah, N. M., Ala'a, H., Ahmad, M. N., and Salameh, Y. (2016). Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons, Micropor Mesopor Mat., 225, 504–514.
  • Ayeni, A., Adeeyo, O., Oresegun, O. M., and Oladimeji, T. E. (2015). Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass, Amer. J. Eng. Res., 4, 14–19.
  • Bang, J. H., Lee, H.-M., An, K.-H., and Kim, B.-J. (2017). A study on optimal pore development of modified commercial activated carbons for electrode materials of supercapacitors, Appl. Surf. Sci., 415, 61–66.
  • Bansal, R. C., and Goyal, M. (2005). Activated Carbon Adsorption. CRC press, New York.
  • Boehm, H. P. (2002). Surface oxides on carbon and their analysis: A critical assessment, Carbon, 40, 145–149.
  • Deiana, A., Sardella, M., Silva, H., Amaya, A., and Tancredi, N. (2009). Use of grape stalk, a waste of the viticulture industry, to obtain activated carbon, J. Hazard Mater., 172, 13–19.
  • Demirbas, E., Kobya, M., and Konukman, A. (2008). Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr (VI) from aqueous solutions, J. Hazard Mater., 154, 787–794.
  • Demirbas, E., Kobya, M., and Sulak, M. (2008). Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon, Bioresource Technol., 99, 5368–5373.
  • Dias, J. M., Alvim-Ferraz, M. C., Almeida, M. F., Rivera-Utrilla, J., and Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review, J. Environ. Manage., 85, 833–846.
  • Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., and Rogalski, M. (2015). Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon, J. Taiwan Inst. Chem. Eng., 53, 112–121.
  • Elliott, C., Colby, T., and Iticks, H. (1989). Activated carbon obliterans alter aspiration of activated charcoal, Chest, 96, 672–674.
  • Erdem, M., Orhan, R., Şahin, M., and Aydın, E. (2016). Preparation and characterization of a novel activated carbon from vine shoots by ZnCl2, Water, Air, & Soil Pollution 227, 1–14.
  • Giannakoudakis, D. A., Kyzas, G. Z., Avranas, A., and Lazaridis, N. K. (2016). Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons, J. Mol. Liq., 213, 381–389.
  • Gundogdu, A., Duran, C., Senturk, H. B., Soylak, M., Imamoglu, M., and Onal, Y. (2013). Physicochemical characteristics of a novel activated carbon produced from tea industry waste, J. Anal. Appl. Pyrol., 104, 249–259.
  • Hashemian, S., Salari, K., and Yazdi, Z. A. (2014). Preparation of activated carbon from agricultural wastes (almond shell and orange peel) for adsorption of 2-pic from aqueous solution, J. Ind. Eng. Chem., 20, 1892–1900.
  • Kaghazchi, T., Kolur, N. A., and Soleimani, M. (2010). Licorice residue and pistachio-nut shell mixture: A promising precursor for activated carbon, J. Ind. Eng. Chem., 16, 368–374.
  • Kumar, A., Prasad, B., and Mishra, I. (2008). Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics, J. Hazard. Mater., 152, 589–600.
  • Li, S., Xu, S., Liu, S., Yang, C., and Lu, Q. (2004). Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas, Fuel Process. Technol., 85, 1201–1211.
  • Liu, Q.-S., Zheng, T., Wang, P., and Guo, L. (2010). Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation, Ind. Crop Prod., 31, 233–238.
  • Lopez-Ramon, M., Stoeckli, F., Moreno-Castilla, C., and Carrasco-Marin, F. (1999). On the characterization of acidic and basic surface sites on carbons by various techniques, Carbon, 37, 1215–1221.
  • Maia, D. A. S., Sapag, K., Toso, J. P., López, R. H., Azevedo, D. C., Cavalcante, C. L., and Zgrablich, G. (2010). Characterization of activated carbons from peach stones through the mixed geometry model, Micropor. Mesopor. Mater., 134, 181–188.
  • Mall, I., Srivastava, V., Kumar, G., and Mishra, I. (2006). Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution, Colloid Surf. A, 278, 175–187.
  • Market Research Report. (2016). Activated carbon market analysis by product (powdered activated carbon (PAC), granular activated carbon (GAC)), by application (liquid phase, gas phase), by end-use (Water Treatment, Food & Beverages, Pharmaceutical & Medical, Automotive, Air Purification) and segment forecasts to 2024, Report ID: 978-1-68038-073-6.
  • Martins, M., Šljukić, B., Sequeira, C. A., Metin, Ö., Erdem, M., Sener, T., and Santos, D. M. (2016). Biobased carbon-supported palladium electrocatalysts for borohydride fuel cells, Int. J. Hydrogen Energy, 41, 10914–10922.
  • Marzbali, M. H., Esmaieli, M., Abolghasemi, H., and Marzbali, M. H. (2016). Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: A batch study, Process Saf. Environ., 102, 700–709.
  • Minuto, F. D., Policicchio, A., Aloise, A., and Agostino, R. G. (2015). Liquid-like hydrogen in the micropores of commercial activated carbons, Int. J. Hydrogen Energy, 40, 14562–14572.
  • Momčilović, M., Purenović, M., Bojić, A., Zarubica, A., and Ranđelović, M. (2011). Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon, Desalination, 276, 53–59.
  • Namasivayam, C., and Sangeetha, D. (2006). Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon, Bioresource Technol., 97, 1194–1200.
  • Nazari, G., Abolghasemi, H., and Esmaieli, M. (2016). Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon, J. Taiwan Inst. Chem. Eng., 58, 357–365.
  • Nunn, T. R., Howard, J. B., Longwell, J. P., and Peters, W. A. (1985). Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood, Ind. Eng. Chem. Proc. Des. Dev. Process, 24, 836–844.
  • Ozdemir, I., Şahin, M., Orhan, R., and Erdem, M. (2014). Preparation and characterization of activated carbon from grape stalk by zinc chloride activation, Fuel Process. Technol., 125, 200–206.
  • Petrova, B., Budinova, T., Tsyntsarski, B., Kochkodan, V., Shkavro, Z., and Petrov, N. (2010). Removal of aromatic hydrocarbons from water by activated carbon from apricot stones, Chem. Eng. J., 165, 258–264.
  • Savova, D., Apak, E., Ekinci, E., Yardim, F., Petrov, N., Budinova, T., Razvigorova, M., and Minkova, V. (2001). Biomass conversion to carbon adsorbents and gas, Biomass, Bioenergy, 21, 133–142.
  • Torrellas, S. Á., Lovera, R. G., Escalona, N., Sepúlveda, C., Sotelo, J. L., and García, J. (2015). Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions, Chem. Eng. J., 279, 788–798.
  • Tsamba, A. J., Yang, W., and Blasiak, W. (2006). Pyrolysis characteristics and global kinetics of coconut and cashew nut shells, Fuel Process. Technol., 87, 523–530.
  • Uysal, T., Duman, G., Onal, Y., Yasa, I., and Yanik, J. (2014). Production of activated carbon and fungicidal oil from peach stone by two-stage process, J. Anal. Apply Pyrol., 108, 47–55.
  • Walker, G., and Weatherley, L. (2000). Prediction of bisolute dye adsorption isotherms on activated carbon, Process Saf. Environ., 78, 219–223.
  • Yahya, M. A., Al-Qodah, Z., and Ngah, C. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew Sust. Energy Rev., 46, 218–235.
  • Yang, J., and Qiu, K. (2010). Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal, Chem. Eng. J., 165, 209–217.
  • Zeriouh, A., and Belkbir, L. (1995). Thermal decomposition of a moroccan wood under a nitrogen atmosphere, Thermochim Acta, 258, 243–248.
  • Zhang, T., Fuchs, B., Secchiaroli, M., Wohlfahrt-Mehrens, M., and Dsoke, S. (2016). Electrochemical behavior and stability of a commercial activated carbon in various organic electrolyte combinations containing Li-salts, Electrochim Acta, 218, 163–173.
  • Zuim, D. R., Carpiné, D., Distler, G. A. R., de Paula Scheer, A., Igarashi-Mafra, L., and Mafra, M. R. (2011). Adsorption of two coffee aromas from synthetic aqueous solution onto granular activated carbon derived from coconut husks, J. Food Eng., 104, 284–292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.