282
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Catalytic ozonation process using PAC/γ-Fe2O3 to Alizarin Red S degradation from aqueous solutions: a batch study

ORCID Icon, ORCID Icon, ORCID Icon, , &
Pages 898-908 | Received 28 Apr 2018, Accepted 04 Oct 2018, Published online: 04 Dec 2018

Reference

  • Abdoli, A., Shokuhi, R., Seid, M. A., and Asgari, G. (2016). Survey of catalytic ozonation process with MgO-modified activated carbon for the removal of metronidazole from aqueous solutions through a fluidized bed reactor, J. Sabzevar Univ. Med. Sci., 23, 84–94.
  • Abou-Gamra, Z. (2013). Kinetics of decolorization of Alizarin Red S in aqueous media by Fenton-like mechanism, Eur. Chem. Bull., 3, 108–112.
  • Akbari, S., Ghanbari, F., Almasi, H., and Asgari, G. (2017). Investigation into catalytic potential of marble powder in catalytic ozonation of reactive black 5, J. Health Field, 2, 10–17.
  • Amalraj, A., and Pius, A. (2014). Photocatalytic degradation of Alizarin Red S and bismarck brown R using TiO2 photocatalyst, J. Chem. Appl. Biochem., 1, 1–7.
  • An, T., Li, G., Zhu, X., Fu, J., Sheng, G., and Kun, Z. (2005). Photoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode-hollow quartz tube photoelectrocatalytic reactor, Appl. Catal. A Gen. 279, 247–256.
  • Asgari, G., Almasi, H., Fardmal, J., Ghanbari, F., Daraie, Z., and Akbari, S. (2015). Optimization of catalytic ozonation process for removal of reactive black 5 dye using bone char ash modified by magnesium oxide and applying Taguchi design, J. Mazandaran Univ. Med. Sci., 24, 252–262.
  • Bandhu, A., Sutradhar, S., Mukherjee, S., Greneche, J., and Chakrabarti, P. (2015). Synthesis, characterization and magnetic property of maghemite (γ-Fe2O3) nanoparticles and their protective coating with pepsin for bio-functionalization, Mater. Res. Bull., 70, 145–154.
  • Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513–886.
  • Chakrabarti, S., Chaudhuri, B., Bhattacharjee, S., Ray, A. K., and Dutta, B. K. (2009). Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst, Chem. Eng. J., 153, 86–93.
  • Dadban Shahamat, Y., Sadeghi, M., Shahryari, A., Okhovat, N., Bahrami Asl, F., and Baneshi, M. M. (2016). Heterogeneous catalytic ozonation of 2,4-dinitrophenol in aqueous solution by magnetic carbonaceous nanocomposite: Catalytic activity and mechanism, Desalin. Water Treat., 57, 20447–20456.
  • Darezereshki, E., Bakhtiari, F., Vakylabad, A. B., and Hassani, Z. (2013). Single-step synthesis of activated carbon/γ-Fe2O3 nano-composite at room temperature, Mater. Sci. Semicond. Process., 16, 221–225.
  • Dargahi, A., Pirsaheb, M., Hazrati, S., Fazlzadehdavil, M., Khamutian, R., and Amirian, T. (2014). Evaluating efficiency of H2O2 on removal of organic matter from drinking water, Desalin. Water Treat., 54, 1–5.
  • Dehghani, M. H., Zarei, A., Mesdaghinia, A., Nabizadeh, R., Alimohammadi, M., and Afsharnia, M. (2017). Adsorption of Cr (VI) ions from aqueous systems using thermally sodium organo-bentonite biopolymer composite (TSOBC): Response surface methodology, isotherm, kinetic and thermodynamic studies, Desalin. Water Treat., 85, 298–312.
  • Depci, T. (2012). Comparison of activated carbon and iron impregnated activated carbon derived from Gölbaşı lignite to remove cyanide from water, Chem. Eng. J., 181–182, 467–478.
  • Derakhshan, Z., Baghapour, M. A., Ranjbar, M., and Faramarzian, M. (2013). Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: Kinetics and equilibrium studies, Health Scope, 2, 136–144.
  • Eaton, A. D., Clesceri, L. S., and Rice, E. W. (2012). Standard Methods for the Examination of Water and Wastewater, Amrican Water Works Assocation (AWWA), Washington, D.C.
  • Erol, F., and Özbelge, T. A. (2008). Catalytic ozonation with non-polar bonded alumina phases for treatment of aqueous dye solutions in a semi-batch reactor, Chem. Eng. J., 139, 272–283.
  • Fan, L., Zhang, Y., Li, X., Luo, C., Lu, F., and Qiu, H. (2012). Removal of Alizarin Red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules, Colloids Surf. B, 91, 250–257.
  • Fazlzadeh, M., Khosravi, R., and Zarei, A. (2017). Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr (VI) from aqueous solution, Ecol. Eng., 103, 180–190.
  • Fayazi, M., Ghanei-Motlagh, M., and Taher, M. A. (2015). The adsorption of basic dye (Alizarin Red S) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: Kinetic and equilibrium studies, Mater. Sci. Semicond. Process., 40, 35–43.
  • Ghaderpoori, M., and Dehghani, M. H. (2016). Investigating the removal of linear alkyl benzene sulfonate from aqueous solution by ultraviolet irradiation and hydrogen peroxide process, Desalin. Water Treat., 57, 15208–15212.
  • Golmohammadi, S., Ahmadpour, M., Mohammadi, A., Alinejad, A., Mirzaei, N., Ghaderpoori, M., and Ghaderpoori, A. (2016). Removal of blue cat 41 dye from aqueous solutions with ZnO nanoparticles in combination with US and US-H2O2 advanced oxidation processes, Environ. Health Eng. Manage., 3, 107–113.
  • Hafezi, F., Karami, M. A., Kamarehie, B., Jafari, A., Ghaderpoori, M., Bazdar, M., and Razipour, E. (2016). Study of efficiency of photochemical oxidation process with UV/peroxidisulfate for removal of Alizarin Red S from aqueous solutions, J. Health Res. Community, 2, 12–22.
  • Kamarehie, B., Mohamadian, J., Mousavi, S. A., Asgari, G., and Shahamat, Y. D. (2017). Aniline degradation from aqueous solution using electro/Fe2+/peroxydisulphate process, Desalin. Water Treat., 80, 337–343.
  • Karami, M. A., Sharafi, K., Asadi, A., Bagheri, A., Yosefvand, F., Charganeh, S. S. H., Mirzaei, N., and Velayati, A. (2016). Degradation of reactive red 198 (RR198) from aqueous solutions by advanced oxidation processes (AOPS): O3, H2O2/O3 and H2O2/Ultrasonic. Bulg. Chem. Commun., 48, 43–49.
  • Lai, B., Zhou, Y., Wang, J., Yang, Z., and Chen, Z. (2013). Application of excitation and emission matrix fluorescence (EEM) and UV–vis absorption to monitor the characteristics of Alizarin Red S (ARS) during electro-Fenton degradation process, Chemosphere, 93, 2805–2813.
  • Lan, B., Huang, R., Li, L., Yan, H., Liao, G., Wang, X., and Zhang, Q. (2013). Catalytic ozonation of p-chlorobenzoic acid in aqueous solution using Fe-MCM-41 as catalyst, Chem. Eng. J. 219, 346–354.
  • Leili, M., Moussavi, G., and Naddafi, K. (2013). Degradation and mineralization of furfural in aqueous solutions using heterogeneous catalytic ozonation, Desalin. Water Treat. 51, 6789–6797.
  • Liu, X., Zhou, Z., Jing, G., and Fang, J. (2013). Catalytic ozonation of acid red B in aqueous solution over a Fe–Cu–O catalyst, Sep. Purif. Technol., 115, 129–135.
  • Ma, S. S., and Zhang, Y. G. (2016). Electrolytic removal of Alizarin Red S by Fe/Al composite hydrogel electrode for electrocoagulation toward a new wastewater treatment, Environ. Sci. Pollut. Res., 23, 22771–22782.
  • Mohammadi, A. A., Alinejad, A., Kamarehie, B., Javan, S., Ghaderpoury, A., Ahmadpour, M., and Ghaderpoori, M. (2017). Metal-organic framework uio-66 for adsorption of methylene blue dye from aqueous solutions, Int. J. Environ. Sci. Technol., 14, 1959–1968.
  • Mohamadiyan, J., Shams-Khoramabadi, G., Mussavi, S. A., Kamarehie, B., Dadban Shahamat, Y., and Godini, H. (2017). Aniline degradation using advanced oxidation process by UV/peroxy disulfate from aqueous solution, Int. J. Eng., Trans. B, 30, 684–690.
  • Mopoung, S. (2008). Chemical and surface properties of longan seed activated charcoal, Int. J. Phys. Sci., 3, 234–239.
  • Moussavi, G., Aghapour, A. A., and Yaghmaeian, K. (2014). The degradation and mineralization of catechol using ozonation catalyzed with MgO/GAC composite in a fluidized bed reactor, Chem. Eng. J., 249, 302–310.
  • Moussavi, G., Aghapour, A. A., and Yaghmaeian, K. (2017). Comparison of the catalytic potential of MgO/GAC, MgO/perlite and MgO/pumice in the catalytic ozonation process for degradation and mineralization of catechol, J. Health, 8, 7–19.
  • Moussavi, G., Alahabadi, A., Yaghmaeian, K., and Eskandari, M. (2013). Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chem. Eng. J., 217, 119–128.
  • Moussavi, G., Khavanin, A., and Alizadeh, R. (2009). The investigation of catalytic ozonation and integrated catalytic ozonation/biological processes for the removal of phenol from saline wastewaters, J. Hazard. Mater., 171, 175–181.
  • Rahmani, A., Mehralipour, J., Shabanlo, A., and Majidi, S. (2015). Efficiency of ciprofloxacin removal by ozonation process with calcium peroxide from aqueous solutions, J. Qazvin Univ. Med. Sci., 19, 55–64.
  • Roopaei, H., Zohdi, A. R., Abbasi, Z., and Bazrafkan, M. (2014). Preparation of new photocatalyst for removal of Alizarin Red-S from aqueous solution, Ind. J. Sci. Technol., 7, 1886.
  • Schumacher, S., Nagel, T., Scheller, F. W., and Gajovic-Eichelmann, N. (2011). Alizarin Red S as an electrochemical indicator for saccharide recognition, Electrochim. Acta, 56, 6607–6611.
  • Staehelin, J., and Hoigne, J. (1982). Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol., 16, 676–681.
  • Tiwari, D., Lalhriatpuia, C., Lee, S. M., and Kong, S. H. (2015). Efficient application of nano-TiO2 thin films in the photocatalytic removal of alizarin yellow from aqueous solutions, Appl. Surf. Sci., 353, 275–283.
  • Valdes, H., Murillo, F., Manoli, J., and Zaror, C. (2008). Heterogeneous catalytic ozonation of benzothiazole aqueous solution promoted by volcanic sand, J. Hazard. Mater., 153, 1036–1042.
  • Zonoozi, M. H., Alavi Moghaddam, M. R., and Arami, M. (2008). Removal of acid red 398 dye from aqueous solutions by coagulation/flocculation process, Environ. Eng. Manage. J., 7, 695–699.
  • Zucca, P., Vinci, C., Sollai, F., Rescigno, A., and Sanjust, E. (2008). Degradation of Alizarin Red S under mild experimental conditions by immobilized 5,10,15,20-tetrakis (4-sulfonatophenyl) porphine–Mn (III) as a biomimetic peroxidase-like catalyst, J. Mol. Catal. A Chem., 288, 97–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.