1,961
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Reactor and microreactor performance and kinetics of the aldol addition of dihydroxyacetone to benzyloxycarbonyl-N-3-aminopropanal catalyzed by D-fructose-6-phosphate aldolase variant A129G

ORCID Icon, ORCID Icon, , ORCID Icon &

References

  • Amézqueta, S., Galan, E., Vila-Fernandez, I., Pumarola, S., Carrascal, M., Abian, J., Ribas-Barba, L., Serra-Majem, L., and Torres, J. L. (2013). The presence of D-fagomine in the human diet from buckwheat-based foodstuffs, Food Chem., 136, 1316–1321.
  • Biwer, A. P., Zuber, P. T., Zelić, B., Gerharz, T., Bellmann, K. J., and Heinzle, E. (2005). Modeling and analysis of a new process for pyruvate production, Ind. Eng. Chem. Res. Res., 44, 3124–3133.
  • Brass, J. M., Hoeks, F. W. J. M. M., and Rohner, M. (1997). Application of modeling techniques for the improvement of industrial bioprocesses, J. Biotechnol., 59, 63–72.
  • Brovetto, M., Gamenara, D., Méndez, P. S., and Seoane, G. A. (2011). C-C bond-forming lyases in organic synthesis, Chem. Rev. Rev., 111, 4346–4403.
  • Castillo, J. A., Parella, T., Inoue, T., Sprenger, G. A., Joglar, J., and Clapés, P. (2009). Synthesis of d-fagomine by aldol addition of dihydroxyacetone to N-Cbz-3-aminopropanal catalysed by d-fructose-6-phosphate aldolase. In Practical Methods for Biocatalysis and Biotransformations, eds Whittall, J. and Sutton, P. W., 212–217, John Wiley & Sons, Ltd, Chichester.
  • Clapés, P. (2016a). Enzymatic C-C bond formation. In Organic Synthesis Using Biocatalysis, eds Goswami, A. and Stewart, J. D., 285–337, Academic Press, Amsterdam.
  • Clapés, P. (2016b). Recent advances in enzyme-catalyzed aldol addition reactions. In Green Biocatalysis, Patel, R., 267–306, John Wiley & Sons, Inc, New Jersey.
  • Clapés, P., Fessner, W. D., Sprenger, G. A., and Samland, A. K. (2010). Recent progress in stereoselective synthesis with aldolases, Curr. Opin. Chem. Biol., 14, 154–167.
  • Clapés, P., and Garrabou, X. (2011). Current trends in asymmetric synthesis with aldolases, Adv. Synth. Catal., 353, 2263–2283.
  • Clapés, P., and Joglar, J. (2013). Enzyme-catalyzed aldol additions. In Modern Methods in Stereoselective Aldol Reactions, eds. Mahrwald, R., 475–527, Wiley-VCH, Weinheim.
  • Ehrfeld, W., Hessel, V., and Löwe, W. (2000). Microreactors – New Technology for Modern Chemistry, Wiley-VCH, Weinheim.
  • Findrik, Z., Presečki, A. V., and Vasić-Rački, Đ. (2010). Mathematical modeling of maltose hydrolysis in different types of reactor, Bioprocess Biosyst. Eng., 33, 299–307.
  • Garrabou, X., Castillo, J. A., Guérard-Hélaine, C., Parella, T., Joglar, J., Lemaire, M., and Clapés, P. (2009). Asymmetric self- and cross-aldol reactions of glycolaldehyde catalyzed by D-fructose-6-phosphate aldolase, Angew. Chem. Int. Ed. Engl., 48, 5521–5525.
  • Gómez, L., Molinar-Toribio, E., Calvo-Torras, M. Á., Adelantado, C., Juan, M. E., Planas, J. M., Cañas, X., Lozano, C., Pumarola, S., Clapés, P., and Torres, J. L. (2012). D-Fagomine Lowers postprandial blood glucose and modulates bacterial adhesion, Br. J. Nutr., 107, 1739–1746.
  • Güclü, D., Szekrenyi, A., Garrabou, X., Kickstein, M., Junker, S., Clapés, P., and Fessner, W.-D. (2016). Minimalist protein engineering of an aldolase provokes unprecedented substrate promiscuity, ACS Catal., 6, 1848–1852.
  • Guérard-Hélaine, C., Debacker, M., Clapés, P., Szekrenyi, A., Hélaine, V., and Lemaire, M. (2014). Efficient biocatalytic processes for highly valuable terminally phosphorylated C5 to C9 D-ketoses, Green Chem, 16, 1109–1113.
  • Haswell, S. J., O'Sullivan, B., and Styring, P. (2001). Kumada-Corriu reactions in a pressure-driven microflow reactor, Lab Chip., 1, 164–166.
  • Heitzig, M., Linninger, A. A., Sin, G., and Gani, R. (2014). A computer-aided framework for development, identification and management of physiologically-based pharmacokinetic models, Comput. Chem. Eng., 71, 677–698.
  • Hernández, K., Joglar, J., Bujons, J., Parella, T., and Clapés, P. (2018). Nucleophile promiscuity of engineered class II pyruvate aldolase YfaU, from E. coli. Angew. Chem. Int. Ed. Engl, 57(14), 3583–3587.
  • Hernández, K., Parella, T., Petrillo, G., Usón, I., Wandtke, C. M., Joglar, J., Bujons, J., and Clapés, P. (2017). Intramolecular benzoin reaction catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I, Angew. Chem. Int. Ed. Engl., 56, 5304–5307.
  • Hernández, K., Zelen, I., Petrillo, G., Usón, I., Wandtke, C. M., Bujons, J., Joglar, J., Parella, T., and Clapés, P. (2015). Engineered L-serine hydroxymethyltransferase from Streptococcus thermophilus for the synthesis of α,α-dialkyl-α-amino acids, Angew. Chem. Int. Ed. Engl., 54, 3013–3017.
  • Mahrwald, R. (2004a). Modern Aldol Reactions, Vol. 1. Enolates, organocatalysis, biocatalysis and natural product synthesis, Wiley-VCH, Weinheim.
  • Mahrwald, R. (2004b). Metal catalysi. In Modern Aldol Reactions. Vol. 2, Wiley-VCH, Weinheim.
  • Mahrwald, R. (2013). Modern Methods in Stereoselective Aldol Reactions, Wiley-VCH, Weinheim.
  • Mathys, R. G., Schmid, A., and Witholt, B. (1999). Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: Process design and economic evaluation, Biotechnol. Bioeng. Bioeng., 64, 459–477.
  • Müller, M. (2012). Recent developments in enzymatic asymmetric C-C bond formation, Adv. Synth. Catal., 354, 3161–3174.
  • Müller, M., Sprenger, G. A., and Pohl, M. (2013). CC bond formation using ThDP-dependent lyases , Curr. Opin. Chem. Biol., 17, 261–270.
  • Oroz-Guinea, I., and García-Junceda, E. (2013). Enzyme catalysed tandem reactions, Curr. Opin. Chem. Biol., 17, 236–249.
  • Ramos-Romero, S., Molinar-Toribio, E., Gómez, L., Pérez-Jiménez, J., Casado, M., Clapés, P., Piña, B., and Torres, J. L. (2014). Effect of (D)-fagomine on excreted enterobacteria and weight gain in rats fed a high-fat high-sucrose diet, Obesity, 22, 976–979.
  • Ringborg, R. H., and Woodley, J. M. (2016). The application of reaction engineering to biocatalysis, React. Chem. Eng., 1, 10–22.
  • Roldán, R., Sanchez-Moreno, I., Scheidt, T., Hélaine, V., Lemaire, M., Parella, T., Clapés, P., Fessner, W. D., and Guérard-Hélaine, C. (2017). Breaking the dogma of aldolase specificity: Simple aliphatic ketones and aldehydes are nucleophiles for fructose-6-phosphate aldolase, Chem. Eur. J., 23, 5005–5009.
  • Saravanan, T., Junker, S., Kickstein, M., Hein, S., Link, M. K., Ranglack, J., Witt, S., Lorilliere, M., Hecquet, L., and Fessner, W. D. (2017). Donor promiscuity of a thermostable transketolase by directed evolution: Efficient complementation of 1-deoxy-D-xylulose-5-phosphate synthase activity, Angew. Chem. Int. Ed. Engl., 56, 5358–5362.
  • Scheibel, E. G. (1954). Correspondence. Liquid diffusivities. Viscosity of gases, Ind. Eng. Chem., 46, 2007–2008.
  • Schmidt, N. G., Eger, E., and Kroutil, W. (2016). Building bridges: Biocatalytic C-C-bond formation toward multifunctional products, ACS Catal., 6, 4286–4311.
  • Schürmann, M., and Sprenger, G. A. (2001). Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases, J. Biol. Chem., 276, 11055–11061.
  • SCIENTIST handbook. (1986–1995). Micromath, Salt Lake City, UT.
  • Soler, A., Garrabou, X., Hernández, K., Gutiérrez, M. L., Busto, E., Bujons, J., Parella, T., Joglar, J., and Clapés, P. (2014). Sequential biocatalytic aldol reactions in multistep asymmetric synthesis: Pipecolic acid, piperidine and pyrrolidine (homo)iminocyclitol derivatives from achiral building blocks, Adv. Synth. Catal., 356, 3007–3024.
  • Soler, A., Gutiérrez, M. L., Bujons, J., Parella, T., Minguillon, C., Joglar, J., and Clapés, P. (2015). Structure-guided engineering of D-fructose-6-phosphate aldolase for improved acceptor tolerance in biocatalytic aldol additions, Adv. Synth. Catal., 357, 1787–1807.
  • Sudar, M., Findrik, Z., Vasić-Rački, Đ., Clapés, P., and Lozano, C. (2013a). Aldol addition of dihydroxyacetone to N-Cbz-3-aminopropanal catalyzed by two aldolases variants in microreactors, Enzyme Microb. Technol., 53, 38–45.
  • Sudar, M., Findrik, Z., Vasić-Rački, Đ., Clapés, P., and Lozano, C. (2013b). Mathematical model for aldol addition catalyzed by two D-fructose-6-phosphate aldolases variants overexpressed in E. coli, J. Biotechnol., 167, 191–200.
  • Szekrenyi, A., Garrabou, X., Parella, T., Joglar, J., Bujons, J., and Clapés, P. (2015). Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions, Nature Chem., 7, 724–729.
  • Szekrenyi, A., Soler, A., Garrabou, X., Guérard-Hélaine, C., Parella, T., Joglar, J., Lemaire, M., Bujons, J., and Clapés, P. (2014). Engineering the donor selectivity of D-fructose-6-phosphate aldolase for biocatalytic asymmetric cross-aldol additions of glycolaldehyde, Chem. Eur. J., 20, 12572–12583.
  • Tufvesson, P., Fu, W., Jensen, J. S., and Woodley, J. M. (2010). Process considerations for the scale-up and implementation of biocatalysis, Food Bioprod. Process., 88, 3–11.
  • Tušek, A., Šalić, A., Kurtanjek, Ž., and Zelić, B. (2012). Modeling and kinetic parameter estimation of alcohol dehydrogenase-catalyzed hexanol oxidation in a microreactor, Eng. Life Sci., 12, 49–56.
  • Tušek, A. J., Tišma, M., Bregović, V., Ptičar, A., Kurtanjek, Ž., and Zelić, B. (2013). Enhancement of phenolic compounds oxidation using laccase from trametes versicolor in a microreactor, Biotechnol. Bioproc. Eng., 18, 686–696.
  • Vasić-Rački, Đ., Bongs, J., Schörken, U., Sprenger, G. A., and Liese, A. (2003). Modeling of reaction kinetics for reactor selection in the case of L-erythrulose synthesis, Bioprocess Biosyst. Eng., 25, 285–290.
  • Vasić-Rački, Đ., Findrik, Z., and Vrsalović Presečki, A. (2011). Modeling as a tool of enzyme reaction engineering for enzyme reactor development, Appl. Microbiol. Biotechnol., 91, 845–856.
  • Vasić-Rački, Đ., Kragl, U., and Liese, A. (2003b). Benefits of enzyme kinetics modelling, Chem. Biochem. Eng. Q., 17, 7–18.
  • Windle, C. L., Muller, M., Nelson, A., and Berry, A. (2014). Engineering aldolases as biocatalysts, Curr. Opin. Chem. Biol., 19, 25–33.
  • Young, M. E., Carroad, P. A., and Bell, R. L. (1980). Estimation of diffusion coefficients of proteins, Biotechnol. Bioeng., 22, 947–955.
  • Zimmermann, V., Hennemann, H.-G., Daussmann, T., and Kragl, U. (2007). Modelling the reaction course of N-acetylneuraminic acid synthesis from N-acetyl-D-glucosamine-new strategies for the optimisation of neuraminic acid synthesis, Appl. Microbiol. Biotechnol., 76, 597–605.
  • Žnidaršič-Plazl, P., and Plazl, I. (2009). Modelling and experimental studies on lipase-catalyzed isoamyl acetate synthesis in a microreactor, Process Biochem., 44, 1115–1121.