314
Views
11
CrossRef citations to date
0
Altmetric
Articles

Surface characterization of sulfated zirconia and its catalytic activity for epoxidation reaction of castor oil

, , , &

References

  • Almeida, R. M. D., Noda, L. K., and Gonçalves, N. S. (2008). Transesterification reaction of vegetable oils, using superacid sulfated TiO2–base catalysts, Appl. Catal. A, 347, 100–105.
  • Alsalme, A., Kozhevnikova, E. F., and Kozhevnikov, I. V. (2008). Heteropoly acids as catalysts for liquid-phase esterification and transesterification, Appl. Catal. A, 349, 170–176.
  • Bagherzadeh, S. B., Haghighi, M., and Rahemi, N. (2017). Novel oxalate gel coprecipitation synthesis of ZrO2-CeO2-promoted CuO-ZnO-Al2O3 nanocatalyst for fuel cell-grade hydrogen production from methanol: Influence of ceria-zirconia loading, Energy Convers. Manage., 134, 88–102.
  • Corma, A., and Garcia, H. (2002). Naphthalene included within all-silica zeolites: Influence of the host on the naphthalene photophysics, Chem. Rev., 102, 3837–3849.
  • Fu, B., Gao, L., Niu, L., Wei, R., and Xiao, G. (2009). Biodiesel from waste cooking oil via heterogeneous superacid catalyst SO42-/ZrO2, Energy Fuels, 23, 569–572.
  • Gardy, J., Hassanpour, A., Lai, X. J., and Mukhtar, H. A. (2016). Synthesis of Ti (SO4) O solid acid nano-catalyst and its application for biodiesel production from used cooking oil, Appl. Catal. A, 527, 81–95.
  • Harmer, M. A., Farneth, W. E., and Sun, Q. (1996). High surface area nafion resin/silica nanocomposites: A new class of solid acid catalyst, J. Am. Chem. Soc., 118, 7708–7715.
  • Khaodee, W., Tangchupong, N., Jongsomjit, B., Laosiripojana, N., Praserthdam, P., and Assabumrungrat, S. (2010). Isosynthesis via CO hydrogenation over SO42-/ZrO2 catalysts, J. Ind. Eng. Chem., 16, 411–418.
  • Kustov, A. L., Kustova, M. Y., Fehrmann, R., and Simonsen, P. (2005). Vanadia on sulphated-ZrO2, a promising catalyst for NO abatement with ammonia in alkali containing flue gases, Appl. Catal. B, 58, 97–104.
  • Liao, Y., Huang, X., Liao, X., and Shi, B. (2011). Preparation of fibrous sulfated zirconia (SO42−/ZrO2) solid acid catalyst using collagen fiber as the template and its application in esterification, J. Mol. Catal. A, 347, 46–51.
  • Li, B. H., and Gonzalez, R. D. (1998). An in situ DRIFTS study of the deactivation and regeneration of sulfated zirconia, Catal. Today, 46, 55–67.
  • Liu, T. L., Jin, F., Wang, X. Q., Fan, Y. C., and Yuan, M. (2017). Synthesis of titanium containing MCM-41 from industrial hexafluorosilicic acid as epoxidation catalyst, Catal. Today, 297, 316–323.
  • Ma, H. Z., Chen, F. T., Wang, B., and Zhuo, Q. F. (2007). Modified SO(4)(2-)/Fe(2)O(3) solid superacid catalysts for electrochemical reaction of toluene with methanol, J. Hazard. Mater., 145, 453–458.
  • Men, J. F., Jia, M. C., and Wang, X. W. (2013). Advances in study on heat-resistant polystyrene strongly basic anion exchange resins, Mate. Rev., 27, 93–97.
  • Mizuno, N., and Misono, M. (1998). Heterogeneous catalysis, Chem. Rev., 98, 199–217.
  • Molczak, T., Jacniacki, J., and Zawadzki, J. (2001). Nitration of aromatic compounds on solid catalysts, Synth. Commun., 319, 173–181.
  • Murayama, T., Nakajima, K., Hirata, J., Omata, K., Hensen, E. J. M., and Ueda, W. (2017). Hydrothermal synthesis of a layered-type W–Ti–O mixed metal oxide and its solid acid activity, Catal. Sci. Technol., 7, 243–250.
  • Nakajima, K., and Hara, M. (2012). Amorphous carbon with SO3H groups as a solid brønsted acid catalyst, ACS Catal., 2, 1296–1304.
  • Okamura, M., Takagaki, A., Toda, M., Kondo, J. N., Domen, K., Tatsumi, T., Hara, M., and Hayashi, S. (2006). Acid-Catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon, Chem. Mater., 18, 3039–3045.
  • Pagán-Torres, Y. J., Gallo, J. M. R., Wang, D., Pham, H. N., Libera, J. A., Marshall, C. L., Elam, J. W., Datye, A. K., and Dumesic, J. A. (2011). Synthesis of highly ordered hydrothermally stable mesoporous niobia catalysts by atomic layer deposition, ACS Catal., 1, 1234–1245.
  • Pesaresi, L., Brown, D. R., Lee, A. F., Montero, J. M., Williams, H., and Wilson, K. (2009). Cs-doped H4SiW12O40 catalysts for biodiesel applications, Appl. Catal. A, 360, 50–58.
  • Sohn, J. R., and Kim, H. W. (1989). Catalytic and surface properties of ZrO2 modified with sulfur compounds, J. Mol. Catal., 52, 361–374.
  • Sohn, J. R., Lee, S. H., and Lim, J. S. (2006). New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis, Catal. Today, 116, 143–150.
  • Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., and Hara, M. (2008). Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups, J. Am. Chem. Soc., 130, 12787–12793.
  • Tangchupong, N., Khaodee, W., Jongsomjit, B., Laosiripojana, N., Praserthdam, P., and Assabumrungrat, S. (2010). Effect of calcination temperature on characteristics of sulfated zirconia and its application as catalyst for isosynthesis, Fuel Process. Technol., 91, 121–126.
  • Toda, M., Takagaki, A., Okamura, M., Kondo, J. N., Hayashi, S., Domen, K., and Hara, M. (2005). Green chemistry: Biodiesel made with sugar catalyst, Nature, 438, 178.
  • Tran, M. T., Gnep, N. S., Szabo, G., and Guisnet, M. (1998). Influence of the calcination temperature on the acidic and catalytic properties of sulphated zirconia, Appl. Catal. A, 171, 207–217.
  • Turco, R., Vitiello, R., Russo, V., Tesser, R., Santacesaria, E., and Serio, M. D. (2013). Selective epoxidation of soybean oil with performic acid catalyzed by acidic ionic exchange resins, Green Process. Synth., 2, 427–434.
  • Usai, E. M., Sini, M. F., Meloni, D., Solinas, V., and Salis, A. (2013). Sulfonic acid-functionalized mesoporous silicas: Microcalorimetric characterization and catalytic performance toward biodiesel synthesis, Microporous Mesoporous Mater., 179, 54–62.
  • Valdés-Martínez, O. U., Suárez-Toriello, V. A., Reyes, J. A. D L., Pawelec, B., and Fierro, J. L. G. (2017). Support effect and metals interactions for NiRu/Al2O3, TiO2 and ZrO2 catalysts in the hydrodeoxygenation of phenol, Catal. Today, 296, 219–227.
  • Victor-Ortega, M. D., Ochando-Pulido, J. M., and Martínez-Ferez, A. (2016). Iron removal and reuse from fenton-like pretreated olive mill wastewater with novel strong-acid cation exchange resin fixed-bed column, J. Ind. Eng. Chem., 36, 298–305.
  • Wang, B., Zhu, J. P., and Ma, H. Z. (2009). Desulfurization from thiophene by SO(4)(2-)/ZrO(2) catalytic oxidation at room temperature and atmospheric pressure, J. Hazard. Mater., 164, 256–264.
  • Wang, S., Matsumura, S., and Toshima, K. (2007). Sulfated zirconia (SO4/ZrO2) as a reusable solid acid catalyst for the Mannich-type reaction between ketene silylacetals and aldimines, Tetrahedron Lett., 48, 6449–6452.
  • Xia, Y. D., Hua, W. M., and Gao, Z. (1999). Pentane reaction over SO42-/ZrO2 and SO42-/Al2O3-ZrO2 catalysts, Chem. J. Chin. Univ., 20, 92–96.
  • Xie, W. L., and Zhang, C. (2016). Propylsulfonic and arenesulfonic functionalized SBA-15 silica as an efficient and reusable catalyst for the acidolysis of soybean oil with medium-chain fatty acids, Food Chem., 211, 74–82.
  • Xie, W. L., Yang, X. L., and Hu, P. T. (2017). Cs2.5H0.5PW12O40 encapsulated in metal–organic framework UiO-66 as heterogeneous catalysts for acidolysis of soybean oil, Catal. Lett., 147, 2772–2782.
  • Yadav, V. P., Maity, S. K., Biswas, P., and Singh, R. K. (2011). Kinetics of esterification of ethylene glycol with acetic acid using cation exchange resin catalyst, Chem. Biochem. Eng. Q., 25, 359–366.
  • Yang, Z., Niu, L., Ma, Z., Ma, H., and Lei, Z. (2011). Fabrication of highly active Sn/W mixed transition-metal oxides as solid acid catalysts, Transition Met. Chem., 36, 269–274.
  • Zhu, M. L., Li, S., Li, Z. X., Lu, X. M., and Zhang, S. J. (2012). Investigation of solid catalysts for glycolysis of polyethylene terephthalate, Chem. Eng. J., 185–186, 168–177.
  • Zou, C. L., Sha, G. Y., Gu, H. F., Huang, Y., and Niu, G. X. (2015). Facile solvothermal post-treatment to improve hydrothermal stability of mesoporous SBA-15 zeolite, Chin. J. Catal., 36, 1350–1357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.