213
Views
3
CrossRef citations to date
0
Altmetric
Articles

Simulation of Marangoni convection effects on the hydrodynamics of liquid–liquid extraction drops

, &

References

  • Albert, C., Kromer, J., Robertson, A., and Bothe, D. (2015). Dynamic behaviour of buoyant high viscosity droplets rising in a quiescent liquid, J. Fluid Mech. Mech. 778, 485–533.
  • Asadollahzadeh, M., Torkaman, R., and Torab-Mostaedi, M. (2017). New correlations for slip velocity and characteristic velocity in a rotary liquid–liquid extraction column, Chem. Eng. Res. Des 127, 146–153.
  • Batchelor, G. K. (1959). Small-scale variation of convected quantities like temperature in turbulent fluid part 1. General discussion and the case of small conductivity, J. Fluid Mech. Mech. 5, 113–133.
  • Bäumler, K. (2014). Simulation of single drops with variable interfacial tension (PhD Thesis, der Friedrich–Alexander–Universit¨at Erlangen–N¨urnberg).
  • Bäumler, K., and Bänsch, E. (2013). A subspace projection method for the implementation of interface conditions in a single-drop flow problem, J. Comput. Phys. 252, 438–457.
  • Bäumler, K., Wegener, M., Paschedag, A., and Bänsch, E. (2011). Drop rise velocities and fluid dynamic behavior in standard test systems for liquid/liquid extraction—Experimental and numerical investigations, Chem. Eng. Sci. 66, 426–439.
  • Bertakis, E., Groß, S., Grande, J., Fortmeier, O., Reusken, A., and Pfennig, A. (2010). Validated simulation of droplet sedimentation with finite-element and level-set methods, Chem. Eng. Sci. 65, 2037–2051.
  • Bothe, D., and Warnecke, H. (2005). VOF-Simulation of Rising Air Bubbles with Mass Transfer to the Ambient Liquid, 10th Workshop on Transport Phenomena in Two-phase Flow, 61–72. Bothe & Warnecke, Sunny Beach, Bulgaria.
  • Chen, J., Wang, Z., Yang, C., and Mao, Z. S. (2015). Numerical simulation of the solute‐induced Marangoni effect with the semi‐Lagrangian advection scheme, Chem. Eng. Technol. 38, 155–163.
  • Crank, J. (1979). The Mathematics of Diffusion. Oxford University Press.
  • Eiswirth, R., Bart, H.-J., Atmakidis, T., and Kenig, E. (2011). Experimental and numerical investigation of a free rising droplet, Chem. Eng. Process. Process Intensif. 50, 718–727.
  • Engberg, R. F., and Kenig, E. Y. (2014). Numerical simulation of rising droplets in liquid–liquid systems: A comparison of continuous and sharp interfacial force models, Int. J. Heat Fluid Flow 50, 16–26.
  • Engberg, R. F., and Kenig, E. Y. (2015). An investigation of the influence of initial deformation on fluid dynamics of toluene droplets in water, Int. J. Multiphase Flow 76, 144–157.
  • Engberg, R. F., Wegener, M., and Kenig, E. Y. (2014). The impact of Marangoni convection on fluid dynamics and mass transfer at deformable single rising droplets—A numerical study, Chem. Eng. Sci. 116, 208–222.
  • Engberg, R. F., Wegener, M., and Kenig, E. Y. (2014). The influence of Marangoni convection on fluid dynamics of oscillating single rising droplets, Chem. Eng. Sci. 117, 114–124.
  • Francois, M. M., and Carlson, N. N. (2013). The global embedded interface formulation for interfacial mass transfer within a volume tracking framework, Comput. Fluids 87, 102–114.
  • Ganguli, A. A., and Kenig, E. Y. (2011). Prediction of interfacial mass transfer in liquid-liquid systems with moving interfaces. 10th international conference on Chemical and Process Engineering, Florence, Italy, pp. 1–3.
  • Henschke, M. (2004). Auslegung Pulsierter Siebboden-Extraktionskolonnen. Shaker.
  • Hirt, C. W., and Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39, 201–225.
  • Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys. 62, 40–65.
  • Kelishami, A. R., Bahmanyar, H., and Mousavian, M. A. (2011). Prediction of mass transfer coefficients in regular packed columns, Chem. Eng. Commun. 198, 1041–1062.
  • Kenig, E., Ganguli, A., Atmakidis, T., and Chasanis, P. (2011). A novel method to capture mass transfer phenomena at free fluid–fluid interfaces, Chem. Eng. Process. 50, 68–76.
  • Komrakova, A., Eskin, D., and Derksen, J. (2013). Lattice Boltzmann simulations of a single n-butanol drop rising in water, Phys. Fluids. 25, 042102.
  • Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., and Zanetti, G. (1994). Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys. 113, 134–147.
  • Li, T., Mao, Z. S., and Chen, J. (2002). Experimental and numerical investigations of single drop mass transfer in solvent extraction systems with resistance in both phases, Chinese. J. Chem. Eng. 10, 1–14.
  • Mao, Z.-S., and Chen, J. (2004). Numerical simulation of the Marangoni effect on mass transfer to single slowly moving drops in the liquid–liquid system, Chem. Eng. Sci. 59, 1815–1828.
  • Mirzaie, M., Sarrafi, A., Pour, H. H., Baghaie, A., and Molaeinasab, M. (2016). Experimental investigation and CFD modeling of hydrodynamic parameters in a pulsed packed column, Solvent Extr. Ion Exch. 34, 643–660.
  • Míšek, T., Berger, R., and Schröter, J. (1985). Standard test systems for liquid extraction studies, 2nd ed., s1985. Published on behalf of the European Federation of Chemical Engineering by Institution of Chemical Engineers, Rugby.
  • Nematbakhsh, G., and Rahbar-Kelishami, A. (2015). The effect of size and concentration of nanoparticles on the mass transfer coefficients in irregular packed liquid–liquid extraction columns, Chem. Eng. Commun. 202, 1493–1501.
  • Özkan, F., Wenka, A., Hansjosten, E., Pfeifer, P., and Kraushaar-Czarnetzki, B. (2016). Numerical investigation of interfacial mass transfer in two phase flows using the VOF method, Eng. Appl. Comp. Fluid 10, 100–110.
  • Rahbar-Kelishami, A., Ashrafizadeh, S. N., and Rahnamaee, M. (2015). The effect of type and concentration of nano-particles on the mass transfer coefficients: Experimental and Sherwood number correlating, Sep. Sci. Technol. 50, 1776–1784.
  • Roshdi, S., Kasiri, N., and Rahbar-Kelishami, A. (2018a). Hydrodynamic simulation of liquid-liquid extraction drops and the effect of mass transfer on the hydrodynamics, J. Petrol. Res. 28, 47–60. (in Persian.)
  • Roshdi, S., Kasiri, N., and Rahbar-Kelishami, A. (2018b). VOF simulation of single rising drops in three liquid-liquid extraction systems using CSF and CSS interfacial force models, Braz. J. Chem. Eng. 35, 1311–1327.
  • Rusche, H. (2003). Computational fluid dynamics of dispersed two-phase flows at high phase fractions (PhD Thesis, Imperial College London, University of London).
  • Solsvik, J., Maaß, S., and Jakobsen, H. A. (2016). Definition of the single drop breakup event, Ind. Eng. Chem. Res. 55, 2872–2882.
  • Taha, T., and Cui, Z. (2004). Hydrodynamics of slug flow inside capillaries, Chem. Eng. Sci. 59, 1181–1190.
  • Torkaman, R., Asadollahzadeh, M., and Torab-Mostaedi, M. (2017). Effects of nanoparticles on the drop behavior in the Oldshue-Rushton extraction column by using central composite design method, Sep. Purif. Technol. 197, 302–313.
  • Wang, J., Lu, P., Wang, Z., Yang, C., and Mao, Z.-S. (2008). Numerical simulation of unsteady mass transfer by the level set method, Chem. Eng. Sci. 63, 3141–3151.
  • Wang, J., Wang, Z., Lu, P., Yang, C., and Mao, Z. S. (2011). Numerical simulation of the Marangoni effect on transient mass transfer from single moving deformable drops, AIChE J. 57, 2670–2683.
  • Wang, J., Yang, C., and Mao, Z. (2008). Numerical simulation of Marangoni effects of single drops induced by interphase mass transfer in liquid-liquid extraction systems by the level set method, Sci. China Ser. B-Chem. 51, 684–694.
  • Wardle, K. E. (2015). Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options, Solvent Extr. Ion Exch. 33, 671–690.
  • Wegener, M. (2014). A numerical parameter study on the impact of Marangoni convection on the mass transfer at buoyancy-driven single droplets, Int. J. Heat Mass Trans. 71, 769–778.
  • Wegener, M., Eppinger, T., Bäumler, K., Kraume, M., Paschedag, A., and Bänsch, E. (2009). Transient rise velocity and mass transfer of a single drop with interfacial instabilities—Numerical investigations, Chem. Eng. Sci. 64, 4835–4845.
  • Wegener, M., Fevre, M., Paschedag, A., and Kraume, M. (2009). Impact of Marangoni instabilities on the fluid dynamic behaviour of organic droplets, Int. J. Heat Mass Transfer 52, 2543–2551.
  • Wegener, M., Grünig, J., Stüber, J., Paschedag, A., and Kraume, M. (2007). Transient rise velocity and mass transfer of a single drop with interfacial instabilities–experimental investigations, Chem. Eng. Sci. 62, 2967–2978.
  • Wegener, M., Kraume, M., and Paschedag, A. R. (2010). Terminal and transient drop rise velocity of single toluene droplets in water, AIChE J. 56, 2–10.
  • Yi, H., Wang, Y., Smith, K. H., Fei, W., and Stevens, G. W. (2016). CFD simulation of liquid–liquid two-phase hydrodynamics and axial dispersion analysis for a non-pulsed disc and doughnut solvent extraction column, Solvent Extr. Ion Exc. 34, 535–548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.