316
Views
8
CrossRef citations to date
0
Altmetric
Articles

Synthesis of highly dispersed phosphotungstic acid encapsulated in MIL-100(Fe) catalyst and its performance in heterogeneous oxidative desulfurization

, &

References

  • Campos-Martin, J. M., Capel-Sanchez, M. C., Perez-Presas, P., and Fierro, J. L. G. (2010). Oxidative processes of desulfurization of liquid fuels, J. Chem. Technol. Biotechnol., 85, 879–890.
  • Canioni, R., Roch-Marchal, C., Sécheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., Férey, G., Grenèche, J.-M., Lefebvre, F., Chang, J.-S., Hwang, Y.-K., Lebedev, O., Turner, S., and van Tendeloo, G. (2011). Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe), J. Mater. Chem., 21, 1226–1233.
  • Cardoso, L. A. M., Alves W., Jr, Gonzaga, A. R. E., Aguiar, L. M. G., and Andrade, H. M. C. (2004). Friedel–Crafts acylation of anisole with acetic anhydride over silica-supported heteropoly phosphotungstic acid (HPW/SiO2), J. Mol. Catal. A, 209, 189–197.
  • Chen, M., Yan, J., Tan, Y., Li, Y., Wu, Z., Pan, L., and Liu, Y. (2015). Hydroxyalkylation of phenol with formaldehyde to bisphenol F catalyzed by keggin phosphotungstic acid encapsulated in metal–organic frameworks MIL-100(Fe or Cr) and MIL-101(Fe or Cr), Ind. Eng. Chem. Res., 54, 11804–11813.
  • Ding, J. W., and Wang, R. (2016). A new green system of HPW@MOFs catalyzed desulfurization using O2 as oxidant, Chin. Chem. Lett., 27, 655–658.
  • Du, S., Chen, X., Sun, Q., Wang, N., Jia, M., Valtchev, V., and Yu, J. (2016). A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance, Chem. Commun., 52, 3580–3583.
  • Guo, Y., Wang, Y., Hu, C., Wang, Y., Wang, E., Zhou, Y., and Feng, S. (2000). Microporous polyoxometalates POMs/SiO2: Synthesis and photocatalytic degradation of aqueous organocholorine pesticides, Chem. Mater., 12, 3501–3508.
  • Hauser, J. L., Tran, D. T., Conley, E. T., Saunders, J. M., Bustillo, K. C., and Oliver, S. R. J. (2016). Plasma treatment of silver impregnated mesoporous aluminosilicate nanoparticles for adsorptive desulfurization, Chem. Mater., 28, 474–479.
  • Hu, X., Lu, Y., Dai, F., Liu, C., and Liu, Y. (2013). Host–guest synthesis and encapsulation of phosphotungstic acid in MIL-101 via “bottle around ship”: An effective catalyst for oxidative desulfurization, Micropor. Mesopor. Mat., 170, 36–44.
  • Huang, D., Zhai, Z., Lu, Y. C., Yang, L. M., and Luo, G. S. (2007). Optimization of composition of a directly combined catalyst in dibenzothiophene oxidation for deep desulfurization, Ind. Eng. Chem. Res., 46, 1447–1451.
  • Huang, D., Wang, Y. J., Yang, L. M., and Luo, G. S. (2006). Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization, Ind. Eng. Chem. Res., 45, 1880–1885.
  • Jin, D., Hou, Z., Luo, Y., and Zheng, X. (2006). Synthesis of dimethyldiphenylmethane over supported 12-tungstophosphoric acid (H3PW12O40), J. Mol. Catal. A, 243, 233–238.
  • Komintarachat, C., and Trakarnpruk, W. (2006). Oxidative desulfurization using polyoxometalates, Ind. Eng. Chem. Res., 45, 1853–1856.
  • Kong, X. J., Lin, Z., Zhang, Z. M., Zhang, T., and Lin, W. (2016). Hierarchical integration of photosensitizing metal-organic frameworks and nickel-containing polyoxometalates for efficient visible-light-driven hydrogen evolution, Angew. Chem. Int. Ed., 55, 6411–6416.
  • Kumar, S., Chandra Srivastava, V., Kumar, A., and Nanoti, S. M. (2016). Effect of gas oil composition on performance parameters of the extractive desulfurization process, RSC Adv., 6, 25293–25301.
  • Li, B., Ma, W., Liu, J., Han, C., Zuo, S., and Li, X. (2011). Synthesis of the well-ordered hexagonal mesoporous silicate incorporated with phosphotungstic acid through a novel method and its catalytic performance on the oxidative desulfurization reaction, Catal Commun., 13, 101–105.
  • Li, H., He, L., Lu, J., Zhu, W., Jiang, X., Wang, Y., and Yan, Y. (2009). Deep oxidative desulfurization of fuels catalyzed by phosphotungstic acid in ionic liquids at room temperature, Energy Fuels, 23, 1354–1357.
  • Liang, R., Chen, R., Jing, F., Qin, N., and Wu, L. (2015). Multifunctional polyoxometalates encapsulated in MIL-100(Fe): Highly efficient photocatalysts for selective transformation under visible light, Dalton Trans., 44, 18227–18236.
  • Luo, G., Kang, L., Zhu, M., and Dai, B. (2014). Highly active phosphotungstic acid immobilized on amino functionalized MCM-41 for the oxidesulfurization of dibenzothiophene, Fuel Process Technol., 118, 20–27.
  • Otsuki, S., Nonaka, T., Takashima, N., Qian, W., Ishihara, A., Imai, T., and Kabe, T. (2000). Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction, Energy Fuels, 14, 1232–1239.
  • Song, H., Ren, Q., Li, F., Song, H. L., and Ma, R. (2016). Preparation of a highly dispersed Ni2P/Al2O3 catalyst using Ni–Al–CO32− layered double hydroxide as a nickel precursor, Catal. Commun., 73, 50–53.
  • Te, M., Fairbridge, C., and Ring, Z. (2001). Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems, Appl. Catal. A-Gen., 219, 267–280.
  • Wan, H., Chen, C., Wu, Z., Que, Y., Feng, Y., Wang, W., Wang, L., Guan, G., and Liu, X. (2015). Encapsulation of heteropolyanion-based ionic liquid within the metal-organic framework MIL-100(Fe) for biodiesel production, ChemCatChem., 7, 441–449.
  • Wang, X. S., Huang, Y. B., Lin, Z. J., and Cao, R. (2014). Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization, Dalton T., 43, 11950–11958.
  • Wang, Y., Song, H., and Sun, X. (2016). Friedel-Crafts alkylation of toluene with tert-butyl alcohol over Fe2O3-modified Hβ, RSC Adv., 6, 107239–107245.
  • Wu, H. Y., Zhang, X. L., Chen, X., Chen, Y., and Zheng, X.-C. (2014). Preparation characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid, J. Solid State Chem., 211, 51–57.
  • Wu, P., Zhu, W., Chao, Y., Zhang, J., Zhang, P., Zhu, H., Li, C., Chen, Z., Li, H., and Dai, S. (2016). A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization, Chem. Commun., 52, 144–147.
  • Xiao, J., Wu, L. M., Wu, Y., Liu, B., Dai, L., Li, Z., Xia, Q. B., and Xi, H. X. (2014). Effect of gasoline composition on oxidative desulfurization using a phosphotungstic acid/activated carbon catalyst with hydrogen peroxide, Appl. Energy., 113, 78–85.
  • Yan, A. X., Yao, S., Li, Y. G., Zhang, Z. M., Lu, Y., Chen, W. L., and Wang, E. B. (2014). Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes, Chem. Eur. J., 20, 6927–6933.
  • Yan, X. M., Mei, P., Lei, J., Mi, Y., Xiong, L., and Guo, L. (2009). Synthesis and characterization of mesoporous phosphotungstic acid/TiO2 nanocomposite as a novel oxidative desulfurization catalyst, J. Mol. Catal. A., 304, 52–57.
  • Yang, W., Billy, J., Taarit, Y. B., Vedrine, J. C., and Essayem, N. (2002). H3PW12O40 supported on Cs modified mesoporous silica: catalytic activity in n-butane isomerisation and in situ FTIR study comparison with microporous CsxH3-xPW12O40, Catal. Today, 73, 153–165.
  • Yang, X. L., Qiao, L.-M., and Dai, W.-L. (2015). Phosphotungstic acid encapsulated in metal-organic framework UiO-66: An effective catalyst for the selective oxidation of cyclopentene to glutaraldehyde, Micropor. Mesopor. Mat., 211, 73–81.
  • Yuan, D., Song, H., Song, H. L., You, M., Wang, B., Li, F., Hao, Y., and Yu, Q. (2017). Heterogeneous oxidative desulfurization for model fuels using novel PW-coupled polyionic liquids with carbon chains of different lengths, J. Taiwan Inst. Chem. E., 76, 83–88.
  • Zhang, L., Lin, X., Wang, J., Jiang, F., Wei, L., Chen, G., and Hao, X. (2016a). Effects of lead and mercury on sulfate-reducing bacterial activity in a biological process for flue gas desulfurization wastewater treatment, Sci. Rep., 6, 30455.
  • Zhang, Y., Lin, B., Wang, J., Han, P., Xu, T., Sun, Y., Zhang, X., and Yang, H. (2016b). Polyoxometalates@metal-organic frameworks derived porous MoO3@CuO as electrodes for symmetric all-solid-state supercapacitor, Electrochim. Acta., 191, 795–804.
  • Zheng, J., and Jiao, Z. (2017). Modified Bi2WO6 with metal-organic frameworks for enhanced photocatalytic activity under visible light, J. Colloid Interf. Sci., 488, 234–239.
  • Zheng, X., Zhang, L., Li, J., Luo, S., and Cheng, J. P. (2011). Magnetic nanoparticle supported polyoxometalates (POMs) via non-covalent interaction: Reusable acid catalysts and catalyst supports for chiral amines, Chem. Commun., 47, 12325–12327.
  • Zhu, M., Luo, G., Kang, L., and Dai, B. (2014). Novel catalyst by immobilizing a phosphotungstic acid on polymer brushes and its application in oxidative desulfurization, RSC Adv., 4, 16769.
  • Zhu, W., Dai, B., Wu, P., Chao, Y., Xiong, J., Xun, S., Li, H., and Li, H. (2015a). Graphene-analogue hexagonal BN supported with tungsten-based ionic liquid for oxidative desulfurization of fuels, ACS Sustainable Chem. Eng., 3, 186–194.
  • Zhu, W., Wu, P., Yang, L., Chang, Y., Chao, Y., Li, H., Jiang, Y., Jiang, W., and Xun, S. (2013). Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels, Chem. Eng. J., 229, 250–256.
  • Zhu, Y., Zhu, M., Kang, L., Yu, F., and Dai, B. (2015b). Phosphotungstic acid supported on mesoporous graphitic carbon nitride as catalyst for oxidative desulfurization of fuel, Ind. Eng. Chem. Res., 54, 2040–2047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.