307
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Kinetics and thermodynamic studies of Cr(VI) adsorption using environmental friendly multifunctional zeolites synthesized from coal fly ash under mild conditions

, ORCID Icon, , , & ORCID Icon

References

  • Abbas, A., Sallam, A. S., Usman, A. R. A., and Al-Wabel, M. I. (2017). Organoclay-based nanoparticles from montmorillonite and natural clay deposits: Synthesis, characteristics, and application for MTBE removal, Appl. Clay Sci., 142, 21–29.
  • Ackley, M. W., Rege, S. U., and Saxena, H. (2003). Application of natural zeolites in the purification and separation of gases, Microporous Mesoporous Mater., 61, 25–42.
  • Agrawal, A., Pal, C., and Sahu, K. K. (2008). Extractive removal of chromium (VI) from industrial waste solution, J. Hazard. Mater., 159, 458–464.
  • Ajouyed, O., Hurel, C., Ammari, M., Allal, L. B., and Marmier, N. (2010). Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: Effects of pH, ionic strength and initial concentration, J. Hazard. Mater., 174, 616–622.
  • Al-Sou’od, K. (2012). Adsorption isotherm studies of chromium (VI) from aqueous solutions using Jordanian pottery materials, APCBEE Procedia, 1, 116–125.
  • Albadarin, A. B., Mangwandi, C., Al-Muhtaseb, A. H., Walker, G. M., Allen, S. J., and Ahmad, M. N. M. (2012). Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent, Chem. Eng. J., 179, 193–202.
  • Alver, E., and Metin, A. Ü. (2012). Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies, Chem. Eng. J., 200–202, 59–67.
  • Anbia, M., and Haqshenas, M. (2015). Adsorption studies of Pb(II) and Cu(II) ions on mesoporous carbon nitride functionalized with melamine-based dendrimer amine, Int. J. Environ. Sci. Technol., 12, 2649–2664.
  • Anirudhan, T. S., and Ramachandran, M. (2007). Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters, Appl. Clay Sci., 35, 276–281.
  • Armagan, B., Turan, M., and Karadag, D. (2011). Adsorption of different reactive dyes onto surfactant-modified zeolite: Kinetic and equilibrium modeling. In Survival and Sustainability: Environmental Concerns in the 21st Century, eds Gökçekus, H., Türker, U., and LaMoreaux, J.W., 1237–1254, Springer Berlin Heidelberg, Berlin, Heidelberg.
  • Arshadi, M., Amiri, M. J., and Mousavi, S. (2014). Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash, Water Resour. Ind., 6, 1–17.
  • Baba, A., and Kaya, A. (2004). Leaching characteristics of fly ash from thermal power plants of soma and tunçbilek, Turkey, Environ. Monit. Assess., 91, 171–181.
  • Baral, S. S., Das, S. N., Rath, P., and Chaudhury, G. R. (2007). Chromium(VI) removal by calcined bauxite, Biochem. Eng. J., 34, 69–75.
  • Barrer, R. M. (1982). Hydrothermal Chemistry of Zeolites, Academic Press, London.
  • Beverskog, B., and Puigdomenech, I. (1997). Revised pourbaix diagrams for chromium at 25–300 °C, Corrosion Science, 39, 43–57.
  • Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation, Microporous Mesoporous Mater., 61, 43–56.
  • Breck, D. W. (1974). Zeolite Molecular Sieves, Wiley, London.
  • Bukhari, S. S., Behin, J., Kazemian, H., and Rohani, S. (2014). A comparative study using direct hydrothermal and indirect fusion methods to produce zeolites from coal fly ash utilizing single-mode microwave energy, J. Mater. Sci., 49, 8261–8271.
  • Cardoso, A. M., Paprocki, A., Ferret, L. S., Azevedo, C. M. N., and Pires, M. (2015). Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment, Fuel, 139, 59–67.
  • Choi, H.-D., Cho, J.-M., Baek, K., Yang, J.-S., and Lee, J.-Y. (2009). Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon, J. Hazard. Mater., 161, 1565–1568.
  • Choi, K., Lee, S., Park, J. O., Park, J. A., Cho, S. H., Lee, S. Y., Lee, J. H., and Choi, J. W. (2018). Chromium removal from aqueous solution by a PEI-silica nanocomposite, Sci. Rep., 8, 1438.
  • Chutia, P., Kato, S., Kojima, T., and Satokawa, S. (2009). Adsorption of As(V) on surfactant-modified natural zeolites, J. Hazard. Mater., 162, 204–211.
  • Dakiky, M., Khamis, M., Manassra, A., and Mer'eb, M. (2002). Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents, Adv. Environ. Res., 6, 533–540.
  • Das, D. P., Parida, K., and De, B. R. (2006). Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation, J. Mol. Catal. A: Chem., 245, 217–224.
  • de Rome, L., and Gadd, G. M. (1987). Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium italicum, Appl. Microbiol. Biotechnol., 26, 84–90.
  • Deveci, H., and Kar, Y. (2013). Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis, J. Ind. Eng. Chem., 19, 190–196.
  • Di, Z.-C., Ding, J., Peng, X.-J., Li, Y.-H., Luan, Z.-K., and Liang, J. (2006). Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles, Chemosphere, 62, 861–865.
  • Doğan, M., Abak, H., and Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters, J. Hazard. Mater., 164, 172–181.
  • Dozzi, M. V., Saccomanni, A., and Selli, E. (2012). Cr(VI) photocatalytic reduction: Effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2, J. Hazard. Mater., 211–212, 188–195.
  • Fathy, N. A., El-Wakeel, S. T., and Abd El-Latif, R. R. (2015). Biosorption and desorption studies on chromium(VI) by novel biosorbents of raw rutin and rutin resin, J. Environ. Chem. Eng., 3, 1137–1145.
  • Fritzen, M. B., Souza, A. J., Silva, T. A. G., Souza, L., Nome, R. A., Fiedler, H. D., and Nome, F. (2006). Distribution of hexavalent Cr species across the clay mineral surface–water interface, J. Colloid Interface Sci., 296, 465–471.
  • Garg, V. K., Gupta, R., Kumar, R., and Gupta, R. K. (2004). Adsorption of chromium from aqueous solution on treated sawdust, Bioresour. Technol., 92, 79–81.
  • Ghasemi, Z., Younesi, H., and Zinatizadeh, A. A. (2016a). Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5, J. Taiwan Inst. Chem. Eng., 65, 357–366.
  • Ghasemi, Z., Younesi, H., and Zinatizadeh, A. A. (2016b). Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology, Chemosphere, 159, 552–564.
  • Guerrero-Coronilla, I., Morales-Barrera, L., and Cristiani-Urbina, E. (2015). Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves, J. Environ. Manage., 152, 99–108.
  • Günay, A., Arslankaya, E., and Tosun, İ. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics, J. Hazard. Mater., 146, 362–371.
  • Hami Dindar, M., Yaftian, M. R., Pilehvari, M., and Rostamnia, S. (2015). SBA-15 mesoporous materials decorated with organic ligands: Use as adsorbents for heavy metal ions, J. Iran. Chem. Soc., 12, 561–572.
  • Heidari, A., Younesi, H., and Mehraban, Z. (2009). Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica, Chem. Eng. J., 153, 70–79.
  • Hu, J., Chen, C., Zhu, X., and Wang, X. (2009). Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes, J. Hazard. Mater., 162, 1542–1550.
  • Jiménez-Castañeda, M., and Medina, D. (2017). Use of surfactant-modified zeolites and clays for the removal of heavy metals from water, Water, 9, 235.
  • Kazemi, F., Younesi, H., Ghoreyshi, A. A., Bahramifar, N., and Heidari, A. (2016). Thiol-incorporated activated carbon derived from fir wood sawdust as an efficient adsorbent for the removal of mercury ion: Batch and fixed-bed column studies, Process Saf. Environ. Prot., 100, 22–35.
  • Kidwai, M., and Mohan, R. (2005). Green chemistry: An innovative technology, Found. Chem., 7, 269–287.
  • Krajišnik, D., Milojević, M., Malenović, A., Daković, A., Ibrić, S., Savić, S., Dondur, V., Matijašević, S., Radulović, A., Daniels, R., and Milić, J. (2010). Cationic surfactants-modified natural zeolites: Improvement of the excipients functionality, Drug Dev. Ind. Pharm., 36, 1215–1224.
  • Largitte, L., and Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon, Chem. Eng. Res. Des., 109, 495–504.
  • León-Torres, A., Cuerda-Correa, E. M., Fernández-González, C., Alexandre Franco, M. F., and Gómez-Serrano, V. (2012). On the use of a natural peat for the removal of Cr(VI) from aqueous solutions, J. Colloid Interface Sci., 386, 325–332.
  • Leyva-Ramos, R., Jacobo-Azuara, A., Diaz-Flores, P. E., Guerrero-Coronado, R. M., Mendoza-Barron, J., and Berber-Mendoza, M. S. (2008). Adsorption of chromium(VI) from an aqueous solution on a surfactant-modified zeolite, Colloids Surf. A: Physicochem. Eng. Asp., 330, 35–41.
  • Li, Z., Roy, S. J., Zou, Y., and Bowman, R. S. (1998). Long-Term chemical and biological stability of surfactant-modified zeolite, Environ. Sci. Technol., 32, 2628–2632.
  • Liang, F.-B., Song, Y.-L., Huang, C.-P., Zhang, J., and Chen, B.-H. (2013). Adsorption of hexavalent chromium on a lignin-based resin: Equilibrium, thermodynamics, and kinetics, J. Environ. Chem. Eng., 1, 1301–1308.
  • Liu, W., Ni, J., and Yin, X. (2014). Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes, Water Res., 53, 12–25.
  • Liu, Y. (2009). Is the free energy change of adsorption correctly calculated?, J. Chem. Eng. Data, 54, 1981–1985.
  • Lo, I. M. C., Lam, C. S. C., and Lai, K. C. K. (2006). Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal, Water Res., 40, 595–605.
  • Luo, X., Wu, X., Reng, Z., Min, X., Xiao, X., and Luo, J. (2017). Enhancement of phosphate adsorption on zirconium hydroxide by ammonium modification, Ind. Eng. Chem. Res., 56, 9419–9428.
  • Malkoc, E., Nuhoglu, Y., and Dundar, M. (2006). Adsorption of chromium(VI) on pomace—An olive oil industry waste: Batch and column studies, J. Hazard. Mater., 138, 142–151.
  • Margarida Alves, M., González Beça, C. G., de Carvalho, R. G., Castanheira, J. M., Sol Pereira, M. C., and Vasconcelos, L. A. T. (1993). Chromium removal in tannery wastewaters “polishing” by pinus sylvestris bark, Water Res., 27, 1333–1338.
  • Mohapatra, P., Samantaray, S. K., and Parida, K. (2005). Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania, J. Photochem. Photobiol. A: Chem., 170, 189–194.
  • Mor, S., Ravindra, K., and Bishnoi, N. R. (2007). Adsorption of chromium from aqueous solution by activated alumina and activated charcoal, Bioresour. Technol., 98, 954–957.
  • Mutongo, F., Kuipa, O., and Kuipa, P. K. (2014). Removal of Cr(VI) from aqueous solutions using powder of potato peelings as a low cost sorbent, Bioinorg. Chem. Appl., 2014, 973153.
  • Namasivayam, C., and Yamuna, R. T. (1995). Adsorption of chromium (VI) by a low-cost adsorbent: Biogas residual slurry, Chemosphere, 30, 561–578.
  • Namieśnik, J., and Rabajczyk, A. (2012). Speciation analysis of chromium in environmental samples, Crit. Rev. Environ. Sci. Technol., 42, 327–377.
  • Navı́o, J. A., Colon, G., Trillas, M., Peral, J., Domenech, X., Testa, J. J., Padron, J., Rodrı́guez, D. and Litter, M. I. (1998). Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method, Appl. Catal. B: Environ., 16, 187–196.
  • Netzahuatl-Muñoz, A. R., Cristiani-Urbina, M. C., and Cristiani-Urbina, E. (2015). Chromium biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark: Kinetics, equilibrium and thermodynamic studies, PLoS One, 10, e0137086.
  • Parida, K., Mishra, K. G., and Dash, S. K. (2012). Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: Equilibrium and kinetic studies, J. Hazard. Mater., 241–242, 395–403.
  • Pearson, R. G. (1988). Absolute electronegativity and hardness: Application to inorganic chemistry, Inorg. Chem., 27, 734–740.
  • Pina, M. P., Mallada, R., Arruebo, M., Urbiztondo, M., Navascués, N., de la Iglesia, O., and Santamaria, J. (2011). Zeolite films and membranes. Emerging applications, Microporous Mesoporous Mater., 144, 19–27.
  • Querol, X., Moreno, N., Umaña, J. C., Alastuey, A., Hernández, E., López-Soler, A., and Plana, F. (2002). Synthesis of zeolites from coal fly ash: An overview, Int. J. Coal Geol., 50, 413–423.
  • Querol, X., Plana, F., Alastuey, A., and López-Soler, A. (1997). Synthesis of Na-zeolites from fly ash, Fuel, 76, 793–799.
  • Reeve, P. J., and Fallowfield, H. J. (2018). Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms, J. Environ. Manage., 205, 253–261.
  • Rengaraj, S., Yeon, K.-H., and Moon, S.-H. (2001). Removal of chromium from water and wastewater by ion exchange resins, J. Hazard. Mater., 87, 273–287.
  • Rosales-Landeros, C., Barrera-Díaz, C. E., Bilyeu, B., Guerrero, V. V., and Núnez, F. U. (2013). A review on Cr(VI) adsorption using inorganic materials, Am. J. Anal. Chem., 4, 8.
  • Rudziński, W., Jaroniec, M., and Sokołowski, S. (1974). A new isotherm equation for multilayer adsorption on heterogeneous surfaces yielding the Dubinin-Radushkevich isotherm in the submonolayer region, Phys. Lett. A, 48, 171–172.
  • Salgado-Gómez, N., Macedo-Miranda, M. G., and Olguín, M. T. (2014). Chromium VI adsorption from sodium chromate and potassium dichromate aqueous systems by hexadecyltrimethylammonium-modified zeolite-rich tuff, Appl. Clay Sci., 95, 197–204.
  • Samiullah, M., Aslam, Z., Rana, A. G., Abbas, A., and Ahmad, W. (2018). Alkali-activated boiler fly ash for Ni(II) removal: Characterization and parametric study, Water Air Soil Pollut., 229, 113.
  • Santos Yabe, M. J., and de Oliveira, E. (2003). Heavy metals removal in industrial effluents by sequential adsorbent treatment, Adv. Environ. Res., 7, 263–272.
  • Selvi, K., Pattabhi, S., and Kadirvelu, K. (2001). Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresour. Technol., 80, 87–89.
  • Shahbazi, A., Younesi, H., and Badiei, A. (2011). Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column, Chem. Eng. J., 168, 505–518.
  • Shahrezaei, F., Mansouri, Y., Zinatizadeh, A. A. L., and Akhbari, A. (2012). Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles, Powder Technol., 221, 203–212.
  • Sharma, A., and Bhattacharyya, K. (2005). Adsorption of chromium (VI) on Azadirachta indica (Neem) leaf powder, Adsorption, 10, 327–338.
  • Shouman, M. A., Fathy, N. A., Khedr, S. A., and Attia, A. A. (2013). Comparative biosorption studies of hexavalent chromium ion onto raw and modified palm branches, Adv. Phys. Chem., 2013, 159712.
  • Song, W., Shi, T., Yang, D., Ye, J., Zhou, Y., and Feng, Y. (2015). Pretreatment effects on the sorption of Cr(VI) onto surfactant-modified zeolite: Mechanism analysis, J. Environ. Manage., 162, 96–101.
  • Sun, B., Reddy, E. P., and Smirniotis, P. G. (2005). Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis, Environ. Sci. Technol., 39, 6251–6259.
  • Tel, H., Altas, Y., and Taner, M. (2004). Adsorption characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide, J. Hazard. Mater., 112, 225–231.
  • Tian, L., Xie, G., Li, R-X., Yu, X-H., and Hou, Y-Q. (2011). Removal of Cr (VI) from aqueous solution using MCM-41, Desalin. Water Treat., 36, 334–343.
  • Treacy, M. M. J., and Higgins, J. B. (2007). GIS: Na-P1. In Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed., eds Treacy, M. M. J., and Higgins, J. B., 194–195, Elsevier Science B.V., Amsterdam.
  • Wang, S., Li, H., and Xu, L. (2006). Application of zeolite MCM-22 for basic dye removal from wastewater, J. Colloid Interface Sci., 295, 71–78.
  • Wang, S., and Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156, 11–24.
  • Zhan, Y., Lin, J., Qiu, Y., Gao, N., and Zhu, Z. (2011). Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite, Front. Environ. Sci. Eng. China, 5, 65–75.
  • Zhao, L., Luo, F., Wasikiewicz, J. M., Mitomo, H., Nagasawa, N., Yagi, T., Tamada, M., and Yoshii, F. (2008). Adsorption of humic acid from aqueous solution onto irradiation-crosslinked carboxymethylchitosan, Bioresour. Technol., 99, 1911–1917.
  • Zolfaghari, G., Esmaili-Sari, A., Anbia, M., Younesi, H., and Ghasemian, M. B. (2013). A zinc oxide-coated nanoporous carbon adsorbent for lead removal from water: Optimization, equilibrium modeling, and kinetics studies, Int. J. Environ. Sci. Technol., 10, 325–340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.