141
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Structural modification of aminoclay for catalytic applications

, , , ORCID Icon, & ORCID Icon

References

  • Amala Jeya Ranchani, A., Parthasarathy, V., Meenarathi, B., Anitha Devi, A., and Anbarasan, R. (2017a). Synthesis, characterization and catalytic activity of nanosized Ni complexed aminoclay, Appl. Nanosci. Nanosci., 7, 577–588.
  • Amala Jeya Ranchani, A., Parthasarathy, V., Meenarathi, B., Anitha Devi, A., and Anbarasan, R. (2017b). Catalytic activity of Ni complexed aminoclay towards the reduction of Cr (VI), p-nitrophenol and fluorescein dye, Appl. Nanosci. Sci., 7, 655–666.
  • Amala Jeya Ranchani, A., Parthasarathy, V., Meenarathi, B., Anitha Devi, A., and Anbarasan, R. (2019). Mg nanoparticle functionalized aminoclay for catalytic applications, Int. J. Environ. Sci. Technol. (in press).
  • Anbarasan, R., Jeyapriya, M., Meenarathi, B., and Tung, K. L. (2018). Low temperature splinting activity and catalytic behavior of nano Ag doped sulphamicacid bridged diblock copolymer, Polym. Adv. Technol., 29, 2025–2035.
  • Anbarasan, R., Palanikumar, S., Anitha Devi, A., Chen, P. H., and Tung, K. L. (2018). Synthesis, characterization and application of superhydrophobic low cost Cu and Al nanoparticles, Int. Nano Lett., 8, 147–156.
  • Agathian, K., Kannammal, L., Meenarathi, B., Kailash, S., and Anbarasan, R. (2018). Synthesis, characterization and adsorption behavior of cotton fiber based schiff base, Int. J. Biol. Macromol., 107, 1102–1112.
  • Reddy, A. B., Manjula, B., Jayaramudu, T., Sadiku, E. R., Anand Babu, P., and Periyar Selvam, S. (2016). 5-Fluorouracil loaded chitosan–PVA/Na+MMT nanocomposite films for drug release and antimicrobial activity. Nano-Micro Lett., 8, 260–269.
  • Celebi, M., Karakas, K., Ertas, I. E., Kaya, M., and Zakmakiran, M. (2017). Pd nanoparticles decorated grapheneoxide, active and reusable nanocatalyst for the catalytic reduction of hexavalent chromium (VI), Chem. Select., 2, 8312–8319.
  • Celebi, M., Yurderi, M., Bulut, A., Kaya, M., and Zahmakiran, M. (2016). Pd nanoparticle supported on amine functionalized SiO2 for the catalytic hexavalent chromium reduction, Appl. Catal. B Environ., 180, 53–64.
  • Chairam, S., Konkamdee, W., and Parakhun, R. (2017). Synthesis of M/CuO M = Ag, Au. from Cu based metal organic frameworks for efficient catalytic reduction of p-nitrophenol, Mater. Chem. Phys., 198, 374–379.
  • Chen, H. H., Anbarasan, R., Kuo, L. S., Tsai, M. Y., Chen, P. H., and Chiang, K. F. (2010). Synthesis, characterizations and hydrophobicity of micro/nano scaled heptadecafluorononanoic acid decorated copper nanoparticle, Nano-Micro Lett., 2, 101–105.
  • Compton, R. G., Mason, D., and Unwin, P. R. (1988). The reduction of fluorescein in aqueous solution (at pH 6), J. Chem. Soc, Faraday Trans. 1, 84, 483–489.
  • Datta, K. K. R., Eswaramoorthy, M., and Rao, C. N. R. (2007). Water solubilized aminoclay metal nanoparticle composites and their novel properties, J. Mater. Chem., 17, 613–615.
  • Fu, J., Wang, S., Zhu, J., Wang, K., Gao, M., Wang, X., and Xu, Q. (2018). Au-Ag bimetallic nanoparticles decorated multi-amino cyclophosphazene hybrid microspheres as enhanced activity catalysts for the reduction of 4-nitrophenol, Mater. Chem. Phys., 207, 315–324.
  • Gong, K., Wang, W., Yan, J., and Han, Z. (2015). Highly reduced molybtophosphate as a noble metal free catalyst for the reduction of chromium using formic acid a reducing agent, J. Mater. Chem. A 3, 6019–6027.
  • Henglein, A. (2000). Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu(CN)2, J. Phys. Chem. B 104, 1206–1211.
  • Hu, M., Zhang, Z., Luo, C., and Qiao, X. (2017). One pot green synthesis of Ag decorated SnO2 microsphere can efficient and reusable catalyst for reduction of 4-nitrophenol, Nanoscale Res. Lett., 12, 435–445.
  • Jana, N. R., Wang, Z. L., and Pal, T. (2000). Redox catalytic properties of Pd nanoparticles, surfactant and electron donor-acceptor effects, Langmuir 16, 2457–2463.
  • Jusoh, S. B., and Samsuddin, M. (2017). Catalytic reduction of 4-nitrophenol using magnetic bio-stabilized Ag nanoparticle, E Proc. Chem., 2, 179–184.
  • Kumar, V., Singh, K., Panwar, S., and Mehta, S. K. (2017). Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol, Int. Nano Lett., 7, 123–131.
  • Korolkov, I. V., Gorin, Y. G., Yeszhanov, A. B., Kozlovskiy, A. L., and Zdorovets, M. V. (2018). Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization, Mater. Chem. Phys., 205, 55–63.
  • Li, D. N., Shao, F. Q., Feng, J. J., Wei, J., Zhang, Q. I., and Wang, A. J. (2018). Uniform Pt/Pd nanocrystals supported on N doped reduced grapheneoxide as catalysts for effective reduction of highly toxic chromium (VI), Mater. Chem. Phys., 205, 64–71.
  • Luo, Z., Wang, J., Qu, L., Jia, J., Jiang, S., Zhou, X., Wu, Z., and Wu, X. (in press). Visible light driven photocatalytic reduction of Cr (VI) on magnetite/carboxylate rich carbon sheets, New J. Chem.
  • Ma, T., Liang, F., Chen, R., Liu, S., and Zhang, H. (2017). Synthesis of Au-Pd bimetallic nanoflowers for catalytic reduction of 4-nitropheol, Nanomaterials 7, 239–248.
  • Majumdar, R., Tantayanon, S., and Braja Gopal Bag, B. G. (2017). Synthesis of palladium nanoparticles with leaf extract of chrysophyllumcainito star apple. and their applications as efficient catalyst for C–C coupling and reduction reactions, Int. Nano Lett. 7, 267–274.
  • Makama, A. B., Salmiaton, A., Saion, E. B., Choong, Y., and Abdullah, N. (2017). Photocatalytic reduction of aqueous Cr(VI) with CdS under visible light irradiation, effect of particle size, Bull. Chem. React. Eng. Catal. 12, 62–70.
  • Mali, M. (2017). Highly selective catalytic reduction of nitroarenes over heterogeneous transition metal catalysts, nano catalysts the new challenges, Synth. Catal. 2, 1–8.
  • Marinho, B. A., Cristóvão, R. O., Djellabi, R., Loureiro, J. M., Boaventura, R. A. R., and Vilar, V. J. P. (2017). Photocatalytic reduction of Cr VI. over TiO2 coated cellulose acetate monolithic structures using solar light, Appl. Catal. B. Environ. 203, 18–30.
  • Menumerov, E., Hughes, R. A., and Neretina, S. (2017). One step catalytic reduction of 4-nitrophenol through direct injection of metal salts into oxygen depleted reactants, Catal. Sci. Technol. 2, 1460–1464.
  • Menumerov, E., Hughes, R. A., and Neretina, S. (2016). Catalytic reduction of 4-nitrophenol, a quantitative assisting of the role of dissolved oxygen in determining the induction time, Nano Lett. 16, 7791–7797.
  • Ojemaye, M. O., Okoh, O., and Okoh, A. I. (2017). Performance of NiFe2O4-SiO2-TiO2 magnetic photocatalyst for the effective photocatalytic reduction of Cr(VI) in aqueous solutions, J. Nanomater. 2017, 1–11.
  • Sowkath, A., Ahmed, A., and Anbarasan, R. (2014). Synthesis, spectral characterization and application of triazine based schiff base and its Cu-complex, Int. J. Emer. Tech. Eng. S1, 15–19.
  • Sribala, G., Meenarathi, B., and Anbarasan, R. (2017). Synthesis, characterization and catalytic activity of fluorescent polyimide nanocomposites, J. Appl. Polym. Sci. 134, 1–11.
  • Suramwar, N. V., Thakare, S. R., and Khaty, N. T. (2016). One pot synthesis of copper nanoparticles at room temperature and its catalytic activity, Arab. J. Chem. 9, S1807–S1812.
  • Xu, T., Xue, J., Zhang, X., He, G., and Chen, H. (2017). Ultrafine Co nanoparticles supported on reduced grapheneoxide, efficient catalyst for fast reduction of hexavalent chromium at room temperature, Appl. Surf. Sci. 403, 294–300.
  • Yang, L., Zheng, X., Liu, M., Luo, S., Luo, Y., and Li, G. (2017). Fast photoelectric reduction of Cr(VI) over MoS2@TiO2 nanotubes on Ti wire, J. Hazard. Mater. 329, 230–240.
  • Zhang, L., Guo, Y., Iqbal, A., Li, B., Dey, M., Gong, D., Liu, W., and Qin, W. (2017). Palladium nanoparticles catalyst for the reduction of Cr VI. and Suzuki coupling reaction, J. Nanopart. Res. 19, 150–163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.