330
Views
8
CrossRef citations to date
0
Altmetric
Articles

Fixed bed column study for pesticide removal using silver nanoparticles-embedded polyurethane foam and glass beads

, ORCID Icon & ORCID Icon

References

  • Anandalakshmi, K., Venugobal, J., and Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using pedalium murex leaf extract and their antibacterial activity, Appl. Nanosci., 6, 399–408. doi: 10.1007/s13204-015-0449-z
  • Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G. V., Jolivet, J.-P., and Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nature Nanotech. Nanotech., 4, 634–641. doi: 10.1038/nnano.2009.242
  • Das, S. K., Das, A. R., and Guha, A. K. (2009). Gold nanoparticles: Microbial synthesis and application in water hygiene management, Langmuir 25, 8192–8199. doi: 10.1021/la900585p
  • Dehghani, M. H., Niasar, Z. S., Mehrnia, M. R., Shayeghi, M., Al-Ghouti, M. A., Heibati, B., McKay, G., and Yetilmezsoy, K. (2017). Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes, Chem. Eng. J., 310, 22–23. doi: 10.1016/j.cej.2016.10.057
  • Dehaghi, S. M., Rahmanifar, B., Moradi, A. M., and Azar, P. A. (2014). Removal of permethrin pesticide from water by chitosan – zinc oxide nanoparticles composite as an adsorbent, J. Saudi Chem. Soc., 18, 348–355. doi: 10.1016/j.jscs.2014.01.004
  • El-Nour, K., Eftaiha, A., Al-Warthan, A., and Ammar, R. A. A. (2010). Synthesis and applications of silver nanoparticles, Arab J. Chem., 3, 135–140. doi: 10.1016/j.arabjc.2010.04.008
  • Geed, S. R., Shrirame, B. S., Singh, R. S., and Rai, B. N. (2017). Assessment of pesticides removal using two-stage integrated aerobic treatment plant (IATP) by bacillus sp. isolated from agricultural field, Bioresour. Technol., 242, 45–54. doi: 10.1016/j.biortech.2017.03.080
  • Gupta, V.K., Eren, T., Atar, N., Yola, M.L., Parlak, C., and Maleh, H.K. (2015) CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos, J. Mol. Liq., 208, 122–129.
  • Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., Hariharan, N., and Eom, S. H. (2009). Colloids and surfaces B: Biointerfaces biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli, Colloids Surf. B Biointerf. 74, 328–335. doi: 10.1016/j.colsurfb.2009.07.048
  • Indhumathy, J., Gurpavithra, S., Ravishankar, K., and Jayachitra, A. (2014). Green synthesis of silver nanoparticles using cassia fistula leaf extract and its applications, Mintage. J. Pharm. Med. Sci., 3, 20–25.
  • Jain, P., and Pradeep, T. (2005). Potential of silver Nanoparticle-Coated polyurethane foam as an antibacterial water filter, Biotechnol. Bioeng., 90, 59–63. doi: 10.1002/bit.20368
  • Kaur, Y., Bhatia, Y., Chaudhary, S., and Chaudhary, G. R. (2017). Comparative performance of bare and functionalize ZnO nanoadsorbents for pesticide removal from aqueous solution, J. Mol. Liq., 234, 94–103. doi: 10.1016/j.molliq.2017.03.069
  • Khan, Z. U. H., Khan, A., Chen, Y., Shah, N. S., Muhammad, N., Khan, A. U., Tahir, K., Khan, F. U., Murtaza, B., Hassan, S. U., Qaisrani, S. A., and Wan, P. (2017). Biomedical applications of green synthesized nobel metal nanoparticles, J. Photochem. Photobiol. B Biol., 173, 150–164. doi: 10.1016/j.jphotobiol.2017.05.034
  • Kim, K. H., Kabir, E., and Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects, Sci. Total Environ., 575, 525–535. doi: 10.1016/j.scitotenv.2016.09.009
  • Le, T. D. H., Scharmüller, A., Kattwinkel, M., Kühne, R., Schüürmann, G., and Schäfer, R. B. (2017). Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments, Ecotoxicol. Environ. Saf., 145, 135–141. doi: 10.1016/j.ecoenv.2017.07.027
  • Lizano-Fallas, V., Masís-Mora, M., Espinoza-Villalobos, D., Lizano-Brenes, M., and Rodríguez-Rodríguez, C. E. (2017). Removal of pestiides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures, Chemosphere 182, 106–113. doi: 10.1016/j.chemosphere.2017.04.147
  • Magnusson, M. H., Deppert, K., Malm, J.-O., Bovin, J.-O., and Samuelson, L. (1999). Gold nanoparticles: Production, reshaping, and thermal charging, J. Nanoparticle Res., 1, 243–251.
  • Manimegalai, G., Shanthakumar, S., and Sharma, C. (2014). Silver nanoparticles: synthesis and application in mineralization of pesticides using membrane support, Int. Nano Lett., 4, 105. doi: 10.1007/s40089-014-0105-8
  • Martinez-Castanon, G. A., Nino-Martínez, N., and Martínez-Gutierrez, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes, J. Nanopart. Res. 10, 1343–1348. doi: 10.1007/s11051-008-9428-6
  • Moawed, E. A., and El-Shahat, M. F. (2014). Extraction of triazine herbicides by polyhydroxyl-polyurethane foam in environmental samples, J. Chromatogr. Sci., 52, 12–18. doi: 10.1093/chromsci/bms198
  • Nair, A. S., and Pradeep, T. (2003). Halocarbon mineralization and catalytic destruction by metal nanoparticles, Curr. Sci., 84, 1560–1563.
  • Pal, J., Deb, M. K., Sircar, J. K., and Agnihotri, P. K. (2015). Microwave green synthesis of biopolymer-stabilized silver nanoparticles and their adsorption behavior for atrazine, Appl. Water Sci. 5, 181–190. doi: 10.1007/s13201-014-0179-5
  • Pareek, V., Gupta, R., and Panwar, J. (2018). Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? Mater. Sci. Eng C., 90, 739–749. doi: 10.1016/j.msec.2018.04.093
  • Philip, D. (2010). Green synthesis of gold and silver nanoparticles using hibiscus rosa sinensis, Phys E, 42, 1417–1424. doi: 10.1016/j.physe.2009.11.081
  • Polowczyk, I., Koźlecki, T., and Bastrzyk, A. (2015). Adsorption of silver nanoparticles on glass beads surface, Adsorpt. Sci. Technol., 33, 731–737.
  • Rai, A. K., Singh, R., Singh, K. N., and Singh, V. B. (2006). FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole, Spectrochim Acta A Mol Biomol Spectrosc. 63, 483–490.
  • Prathna, T. C., Sharma, S. K., and Kennedy, M. (2018). Nanoparticles in household level water treatment: an overview, Sep. Purif. Technol., 199, 260–270. doi: 10.1016/j.seppur.2018.01.061
  • Saifuddin, N., Nian, C. Y., Zhan, L. W., and Ning, K. X. (2011). Chitosan-silver nanoparticles composite as point-of-use drinking water filtration system for household to remove pesticides in water, Asian J. Biochem., 6, 142–159. doi: 10.3923/ajb.2011.142.159
  • Sen, G. S., Chakraborty, I., and Mundampra, S. (2015). Simultaneous dehalogenation and removal of persistent halocarbon pesticides from water using graphene nanocomposites: a case study of lindane, ACS Sustain. Chem. Eng., 3, 1155–1163. doi: 10.1021/acssuschemeng.5b00080
  • Sharma, C., Kumar, S., Unni, A. R., et al. (2014). Foam stability and polymer phase morphology of flexible polyurethane foams synthesized from castor oil, J. Appl. Polym. Sci., 131, 40668. doi: 10.1002/app.40668
  • Siripattanakul-Ratpukd, S., and Furhacker, M. (2014). Review: Issues of silver nanoparticles in engineered environmental treatment systems, Water, Air Soil Pollut., 225, 1939 doi: 10.1007/s11270-014-1939-4
  • Sreeprasad, T. S., Gupta, S., Sen, Maliyekkal, S. M., and Pradeep, T. (2013). Immobilized graphene-based composite from asphalt: Facile synthesis and application in water purification, J. Hazard Mater., 246–247, 213–220. doi: 10.1016/j.jhazmat.2012.12.022
  • Taka, A. L., Pillay, K., and Mbianda, X. Y. (2017). Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review, Carbohydr. Polym. 159, 94–107. doi: 10.1016/j.carbpol.2016.12.027
  • Vinhal, J. O., Nege, K. K., Lage, M. R., de M. Carneiro, J. W., Lima, C. F., and Cassella, R. J. (2017). Adsorption of the herbicides diquat and difenzoquat on polyurethane foam: Kinetic, equilibrium and computational studies, Ecotoxicol. Environ. Saf., 145, 597–604. doi: 10.1016/j.ecoenv.2017.08.005
  • Wang, H., Qiao, X., Chen, J., et al. (2005). Mechanisms of PVP in the preparation of silver nanoparticles., Mater. Chem. Phys., 94, 449–453. doi: 10.1016/j.matchemphys.2005.05.005
  • Zhang, Z., Zhao, B., and Hu, L. (1996). PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes, J. Solid State Chem., 121, 105–110.
  • Zhu, X., Li, B., Yang, J., Li, Y., Zhao, W., Shi, J., and Gu, J. (2015). Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-Based MOFs of UiO-67, ACS Appl. Mater. Interf., 7, 223–231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.