205
Views
4
CrossRef citations to date
0
Altmetric
Articles

Fenton oxidation and adsorption pretreatment for superior biogas recovery from biomethanated spent wash

&

References

  • Amaral-Silva, N., Martins, R. C., Paiva, C., Castro-Silva, S., and Quinta-Ferreira, R. M. (2016). A new winery wastewater treatment approach during vintage periods integrating ferric coagulation, Fenton reaction and activated sludge, J. Environ. Chem. Eng., 4, 2207–2215.
  • Amaral-Silva, N., Martins, R. C., Nunes, P., Castro-Silva, S., and Quinta-Ferreira, R. M. (2017). From a lab test to industrial application: scale-up of Fenton process for real olive mill wastewater treatment, J. Chem. Technol. Biotechnol., 92, 1336–1344.
  • Andreozzi, R., Caprio, V., Insola, A., and Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today, 53, 51–59.
  • Asaithambi, P., Saravanathamizhan, R., and Matheswaran, M. (2015). Comparison of treatment and energy efficiency of advanced oxidation processes for the distillery wastewater, Int. J. Environ. Sci. Technol., 12, 2213–2220.
  • Aygun, A., Yilmaz, T., Nas, B., and Barktay, A. (2012). Effect of temperature on Fenton oxidation of young landfill leachate: Kinetic assessment and sludge properties, Glob. Nest J., 14, 487–495.
  • Ayub, S., and Usmani, S. (2014). Treatment of distilleries and breweries spentwash wastewater, Int. J. Res. Eng. Technol., 3, 204–214.
  • Bhoite, G. M., and Vaidya, P. D. (2018). Improved biogas generation from biomethanated distillery wastewater by pretreatment with catalytic wet air oxidation, Ind. Eng. Chem. Res., 57, 2698–2704.
  • Bigda, R. J. (1996). Fenton’s chemistry: an effective advanced oxidation process, J. Adv. Sci. Eng., 6, 34–39.
  • David, C., Arivazhagan, M., and Tuvakara, F. (2015). Decolorization of distillery spent wash effluent by electro oxidation (EC and EF) and Fenton processes: a comparative study, Ecotoxicol. Environ. Saf., 121, 142–148.
  • de Heredia, J. B., Torregrosa, J., Dominguez, J. R., and Partido, E. (2005). Degradation of wine distillery wastewaters by the combination of aerobic biological treatment with chemical oxidation by Fenton’s reagent, Water Sci. Technol., 51, 167–174.
  • Hadavifar, M., Zinatizadeh, A. A., Younesi, H., and Galehdar, M. (2009). Fenton and photo-Fenton treatment of distillery effluent and optimization of treatment conditions with response surface methodology, Asia-Pacific J. Chem. Eng., 5, 454–464.
  • Khamaruddin, P. F., Bustam, M. A., and Omar, A. A. (2011). Using Fenton’s reagent for degradation of diisopropanolamine: Effect of temperature and pH, International Conference on Environmental and Industrial Innovation, IACSIT Press, Singapore.
  • Kumar, A. (2003). Handbook of Waste Management in Sugar Mills and Distilleries, Somaiya Publication, India.
  • Lin, S. H., Lin, C. M., and Leu, H. G. (1999). Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation, Water Res., 33, 1735–1741.
  • Maamir, W., Quahabi, Y., Poncin, S., Li, H., and Bensadok, K. (2017). Effect of Fenton pretreatment on anaerobic digestion of olive mill wastewater and olive mill solid waste in mesophilic conditions, Int. J. Green Energy, 14, 550–560.
  • Malik, S. N., Saratchandra, T., Tembhekar, P. D., Padoley, K. V., Mudliar, S. L., and Mudliar, S. N. (2014). Wet air oxidation induced enhanced biodegradability of distillery effluent, J. Environ. Manag., 136, 132–138.
  • Martins, R. C., Pinto, F. L., Castro-Silva, S., and Quinta-Ferreira, R. M. (2013). Flocculation, ozonation, and Fenton’s process in the treatment of distillery effluents, J. Environ. Eng., 139, 110–116.
  • Martins, R. C., Silva, A. M. T., Castro‐Silva, S., Garção‐Nunes, P., and Quinta‐Ferreira, R. M. (2010). Adopting strategies to improve the efficiency of ozonation in the real scale treatment of olive oil mill wastewaters, Environ. Technol., 31, 1459–1469.
  • Martins, R. C., Silva, A. M. T., Castro‐Silva, S., Garção‐Nunes, P., and Quinta‐Ferreira, R. M. (2011). Advanced oxidation processes for treatment of effluents from a detergent industry, Environ. Technol., 32, 1031–1041.
  • Nesheiwat, F. K., and Swanson, A. G. (2000). Clean contaminated sites using Fenton’s reagent, Chem. Eng. Prog., 96, 61–66.
  • Padoley, K. V., Tembhekar, P. D., Saratchandra, T., Pandit, A. B., Pandey, R. A., and Mudliar, S. N. (2012). Wet air oxidation as a pretreatment option for selective biodegradability enhancement and biogas generation potential from complex effluent, Bioresour. Technol., 120, 157–164.
  • Rodrigues, R. P., Rodrigues, D. P., Klepacz-Smolka, A., Martins, R. C., and Quina, M. J. (2019). Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates, Sci. Total Environ., 649, 1599–1608.
  • Sahinkaya, S., Kalipci, E., and Aras, S. (2015). Disintegration of waste activated sludge by different applications of Fenton process, Process Safety Environ. Protect., 93, 274–281.
  • Saratchandra, T., Malik, S. N., Suvidha, G., Padmere, M. L., Shanmugam, P., and Mudliar, S. N. (2014). Wet air oxidation pretreatment of biomethanated distillery effluent: Mapping pretreatment efficiency in terms color, toxicity reduction and biogas generation, Bioresour. Technol., 158, 135–140.
  • Satyawali, Y., and Balakrishnan, M. (2007). Removal of color from biomethanated distillery spentwash by treatment with activated carbons, Bioresour. Technol., 98, 2629–2635.
  • Shivayogimath, C. B., and Inani, S. (2014). Treatment of biomethanated distillery spent wash by adsorption process on bagasse activated carbon, Int. J. Appl. Sci. Eng. Res., 3, 1066–1075.
  • Su, C., Pukdee-Asa, M., Ratanatamskul, C., and Lu, M. (2011). Effect of operating parameters on the decolorization and oxidation of textile wastewater by the fluidized-bed Fenton process, Sep. Purif. Technol., 83, 100–105.
  • Tembhekar, P. D., Padoley, K. V., Mudliar, S. L., and Mudliar, S. N. (2015). Kinetics of wet air oxidation pretreatment and biodegradability enhancement of a complex industrial wastewater, J. Environ. Chem. Eng., 3, 339–348.
  • Thakur, C., Srivastava, V. C., and Mall, I. D. (2009). Electrochemical treatment of distillery wastewater: Parametric and residue disposal study, Chem. Eng. J., 148, 496–505.
  • Uzal, N., Gokcay, C. F., and Demirer, G. N. (2003). Sequential (anaerobic/aerobic) biological treatment of malt whisky wastewater, Process Biochem., 39, 279–286.
  • Wakadikar, K., Kumar, R., Kumar, S., Mudhoo, A., and Sil, A. (2012). Influence of sewage sludge and leachate on biochemical methane potential of waste biomass, J. Bioremed. Biodeg., S8, 002.
  • Yang, M., Hu, J., and Ito, K. (1998). Characteristics of Fe2+/H2O2/UV oxidization process, Environ. Technol., 19, 183–191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.