239
Views
17
CrossRef citations to date
0
Altmetric
Articles

Performance optimization for the viscoelastic surfactant using nanoparticles for fracturing fluids

ORCID Icon, , , &

References

  • Al-Muntasheri, G. A., Liang, F., and Hull, K. L. (2017). Nanoparticle-enhanced hydraulic-fracturing fluids: A Review, SPE Prod. Oper., 32, 186–195. doi: 10.2118/185161-PA.
  • Bandyopadhyay, R., and Sood, A. K. (2005). Effect of silica colloids on the rheology of viscoelastic gels formed by the surfactant cetyl trimethylammonium tosylate, J. Colloid Interface Sci., 283(2), 585–591. doi: 10.1016/J.JCIS.2004.09.038.
  • Barati, R. (2015). Application of nanoparticles as fluid loss control additives for hydraulic fracturing of tight and ultra-tight hydrocarbon-bearing formations, J. Nat. Gas Sci. Eng., 27, 1321–1327. doi: 10.1016/J.JNGSE.2015.03.028.
  • Bunger, A. P, Zhang, X., and Jeffrey, R. G. (2012). Parameters affecting the interaction among closely spaced hydraulic fractures, SPE J., 17(01), 292–306. doi: 10.2118/140426-PA.
  • Chauhan, G., Ojha, K., Baruah, A., Chauhan, G., Ojha, K., and Baruah, A. (2017). Effects of nanoparticles and surfactant charge groups on the properties of VES gel, Braz. J. Chem. Eng., 34(1), 241–251. doi: 10.1590/0104-6632.20170341s20150094.
  • Chavda, S., Danino, D., Aswal, V. K., Singh, K., Marangoni, D. G., and Bahadur, P. (2017). Microstructure and transitions in mixed micelles of cetyltrimethylammonium tosylate and bile salts, Colloids Surf. A Physicochem. Eng. Asp., 513, 223–233. doi: 10.1016/J.COLSURFA.2016.10.047.
  • Fredd, C. N., Olsen, T. N., Brenize, G., Quintero, B. W., Bui, T., Glenn, S., and Boney, C. L. (2004). Polymer-free fracturing fluid exhibits improved cleanup for unconventional natural gas well applications. Paper presented at the SPE Eastern Regional Meeting, Society of Petroleum Engineers, September 5-17, in Charleston, West Virginia.
  • Gottardo, S., Gavriel, M., Mech, A., Sokull-Klüttgen, B., Gaillard, C., and European Commission. Joint Research Centre (2016). Use of Nanomaterials in Fluids, Proppants, and Downhole Tools for Hydraulic Fracturing of Unconventional Hydrocarbon Reservoirs. Luxembourg: Publications Office.
  • Guo, J., Zhao, X., Zhu, H., Zhang, X., and Pan, R. (2015). Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method, J. Nat. Gas Sci. Eng., 25, 180–188. doi: 10.1016/J.JNGSE.2015.05.008.
  • Helgeson, M. E., Hodgdon, T. K., Kaler, E. W., Wagner, N. J., Vethamuthu, M., and Ananthapadmanabhan, K. P. (2010). Formation and rheology of viscoelastic “Double Networks” in wormlike micelle − nanoparticle mixtures, Langmuir, 26(11), 8049–8060. doi: 10.1021/la100026d.
  • Huang, Z., Li, C. H., Liang, Y. N., Han, S. K., and Wang, L. S. (2002). Improvement on the synthetic method of N,N′-dilauroyl- ethylenediamine-diacetic acid, Fine Chem., 19, 47–50. doi: 10.3321/j.issn:1003-5214.2002.01.001.
  • Kang, W., Cao, C., Guo, S., Tang, X., Lashari, Z. A., Gao, Y., Zhang, X., Iqbal, M. W., and Yang, H. (2019). Mechanism of silica nanoparticles’ better-thickening effect on amphiphilic polymers in high salinity condition, J. Mol. Liq., 277, 254–260. doi: 10.1016/J.MOLLIQ.2018.12.092.
  • Kang, W., Wang, P., Fan, H., Yang, H., Dai, C., Yin, X., Zhao, Y., and Guo, S. (2017). A pH-responsive wormlike micellar system of a noncovalent interaction-based surfactant with a tunable molecular structure, Soft Matter, 13(6), 1182–1189. doi: 10.1039/C6SM02655A.
  • Kang, W., Zhao, Y., Wang, P., Li, Z., Hou, X., Huang, Z., and Yang, H. (2018). Rheological behavior and mechanism of pH-responsive wormlike micelle variations induced by isomers of phthalic acid, Soft Matter, 14(22), 4445–4452. doi: 10.1039/C8SM00467F.
  • Lin, Y., Han, X., Huang, J., Fu, H., and Yu, C. (2009). A facile route to design pH-responsive viscoelastic wormlike micelles: Smart use of hydrotropes, J. Colloid Interface Sci., 330(2), 449–455. doi: 10.1016/J.JCIS.2008.10.071.
  • Lu, H., Shi, Q., Wang, B., and Huang, Z. (2016). Spherical-to-wormlike micelle transition in a pseudogemini surfactant system with two types of effective pH-responsive groups, Colloids Surf. A Physicochem. Eng. Asp., 494, 74–80. doi: 10.1016/J.COLSURFA.2016.01.014.
  • Luo, M., Jia, Z., Sun, H., Liao, L., and Wen, Q. (2012). Rheological behavior and microstructure of an anionic surfactant micelle solution with pyroelectric nanoparticle, Colloids Surf. A Physicochem. Eng. Asp., 395, 267–275. doi: 10.1016/J.COLSURFA.2011.12.052.
  • Lv, Q., Li, Z., Li, B., Li, S., and Sun, Q. (2015). Study of nanoparticle–surfactant-stabilized foam as a fracturing fluid, Ind. Eng. Chem. Res., 54(38), 9468–9477. doi: 10.1021/acs.iecr.5b02197.
  • Mao, J., Yang, X., Wang, D., Li, Y., and Zhao, J. (2016). A novel gemini viscoelastic surfactant (VES) for fracturing fluids with good temperature stability, RSC Adv., 6(91), 88426–88432. doi: 10.1039/C6RA17823E.
  • Negin, C., Ali, S., and Xie, Q. (2017). Most common surfactants employed in chemical enhanced oil recovery, Petroleum, 3(2), 197–211. doi: 10.1016/J.PETLM.2016.11.007.
  • Nettesheim, F., Liberatore, M. W., Hodgdon, T. K., Wagner, N. J., Kaler, E. W., and Vethamuthu, M. (2008). Influence of nanoparticle addition on the properties of wormlike micellar solutions, Langmuir, 24(15), 7718–7726. doi: 10.1021/la800271m.
  • Padasala, S., Patel, V., Singh, K., Ray, D., Aswal, V. K., and Bahadur, P. (2016). Effect of polymers on worm-like micelles of cetyltrimethylammonium tosylate, Colloids Surf. A Physicochem. Eng. Asp., 502, 147–158. doi: 10.1016/J.COLSURFA.2016.04.064.
  • Peng, B., Tang, J., Luo, J., Wang, P., Ding, B., and Tam, K. C. (2018). Applications of nanotechnology in oil and gas industry: Progress and perspective, Can J Chem Eng., 96(1), 91–100. doi: 10.1002/cjce.23042.
  • Silva, K. N., Novoa-Carballal, R., Drechsler, M., Müller, A. H. E., Penott-Chang, E. K., and Müller, A. J. (2016). The influence of concentration and pH on the structure and rheology of cationic surfactant/hydrotrope structured fluids, Colloids Surf. A Physicochem. Eng. Asp., 489, 311–321. doi: 10.1016/J.COLSURFA.2015.10.054.
  • Sullivan, P. F., Gadiyar, B. R., Morales, R. H., Holicek, R. A., Sorrells, D. C., Lee, J., and Fischer D. D. (2006). Optimization of a visco-elastic surfactant (VES) fracturing fluid for application in high-permeability formations, Paper presented at the SPE International Symposium and Exhibition on Formation Damage Control, Society of Petroleum Engineers, February 15–17, in Lafayette, Louisiana, USA.
  • Wang, P., Kang, W., Tian, S., Yin, X., Zhao, Y., Hou, X., Zhang, X., and Yang, H. (2018). A responsive anionic wormlike micelle using pH-directed release of stored sodium based on polybasic acids, Soft Matter, 14(24), 5031–5038. doi: 10.1039/C8SM00944A.
  • Wang, P., Kang, W., Yang, H., Zhao, Y., Yin, X., Zhu, Z., and Zhang, X. (2017). The N-allyl substituted effect on wormlike micelles and salt tolerance of a C 22 -tailed cationic surfactant, Soft Matter, 13(40), 7425–7432. doi: 10.1039/C7SM01322A.
  • Wu, H., Zhou, Q., Xu, D., Sun, R., Zhang, P., Bai, B., and Kang, W. (2018a). SiO2 nanoparticle-assisted low-concentration viscoelastic cationic surfactant fracturing fluid, J. Mol. Liq., 266, 864–869. doi: 10.1016/J.MOLLIQ.2018.06.107.
  • Wu, X., Zhang, Y., Sun, X., Huang, Y., Dai, C., and Zhao, M. (2018b). A novel CO2 and pressure responsive viscoelastic surfactant fluid for fracturing, Fuel, 229, 79–87. doi: 10.1016/J.FUEL.2018.04.081.
  • Yang, J. C, Li, F. C., Xu, H. P., He, Y. R., Huang, Y. M., and Jiang, B. C. (2015). Heat transfer performance of viscoelastic-fluid-based nanofluid pipe flow at entrance region, Exp. Heat Transf., 28, 125–138. doi:10.1080/08916152.2013.821545.
  • Zargartalebi, M., Barati, N., and Kharrat, R. (2014). Influences of hydrophilic and hydrophobic silica nanoparticles on anionic surfactant properties: Interfacial and adsorption behaviors, J. Pet. Sci. Eng., 119, 36–43. doi: 10.1016/J.PETROL.2014.04.010.
  • Zhao, H., Nasr-El-Din, H. A., and Al-Bagoury, M. (2015). A new fracturing fluid for HP/HT applications. Paper presented at the SPE European Formation Damage Conference and Exhibition, Society of Petroleum Engineers, June 3–5, in Budapest, Hungary.
  • Zhao, M., Zhang, Y., Zou, C., Dai, C., Gao, M., Li, Y.,Lv, W., Jiang, J., and Wu, Y. (2017a). Can more nanoparticles induce larger viscosities of nanoparticle-enhanced wormlike micellar system (NEWMS)? Mater. (Basel, Switzerland). 10(9), 1096. doi: 10.3390/ma10091096.
  • Zhao, X., Guo, J., Peng, H., Pan, R., Aliu, A. O., Lu, Q., and Yang, J. (2017b). Synthesis and evaluation of a novel clean hydraulic fracturing fluid based on star-dendritic polymer, J. Nat. Gas Sci. Eng., 43, 179–189. doi: 10.1016/J.JNGSE.2017.03.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.