86
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Use of melt blown polypropylene nanofiber templates to obtain homogenous pore channels in glycidyl methacrylate/ethyl dimethacrylate-based monoliths

ORCID Icon, , , ORCID Icon, , & show all

References

  • Acquah C, Danquah MK, Moy CKS, Anwar M, Ongkudon CM. 2017. Parametric investigation of polymethacrylate monolith synthesis and stability via thermogravimetric characterisation. Asia Pacfic J Chem Eng. 12:352–364. doi:10.1002/apj.2077.
  • Agyei D, Ongkudon CM, Wei CY, Chan AS, Danquah MK. 2016. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod Process. 98:244–256. doi:10.1016/j.fbp.2016.02.003
  • Alenezi H, Cam M.E, Edirisinghe M. 2019. Experimental and theoretical investigation of the fluid behavior during polymeric fiber formation with and without pressure. Appl Phys Rev. 6: 041401-0-13. doi:10.1063/1.5110965.
  • Bono A, Anisuzzaman SM, Ding OW. 2014. Effect of process conditions on the gel viscosity and gel strength of semi-refined carrageenan (SRC) produced from seaweed (Kappaphycus alvarezii). J King Saud Univ Eng Sci. 26:3–9. doi:10.1016/j.jksues.2012.06.001
  • Chan YW, Kansil T, Ongkudon CM. 2017. Analytical and preparative polymethacrylate monolith fabrication: effect of porogen content and column size on pore morphology. Colloid Polym Sci. 295:2373–2382.
  • Drabek J, Zatloukal M. 2019. Meltblown technology for production of polymeric microfibers/nanofibers: a review. Phys Fluids. 31(9):091301. doi:10.1063/1.5116336
  • Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. 2007. Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer (Guildf). 48(11):3306–3316. doi:10.1016/j.polymer.2007.04.005
  • Groarke RJ, Brabazon D. 2016. Methacrylate polymer monoliths for separation applications. J Mater. 9:1–33. doi:10.3390/ma9060446
  • Gumba RE, Saallah S, Misson M, Ongkudon CM, Anton A. 2016. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Res J. 3(3):431–447. doi:10.18331/BRJ2016.3.3.3
  • Hamidipour M, Larachi F. 2010. Effect of channel size and flow modulation on filtration in monolith reactors with cocurrent gas-suspension downflow. Sep Purif Technol. 73(2):327–338. doi:10.1016/j.seppur.2010.04.025
  • Hassan MA, Yeom BY, Wilkie A, Pourdeyhimi B, Khan SA. 2013. Fabrication of nanofiber meltblown membranes and their filtration properties. J Membr Sci. 427:336–344. doi:10.1016/j.memsci.2012.09.050
  • Heseltine PL, Ahmed J, Edirisinghe M. 2018. Developments in pressurized gyration for the mass production of polymeric fibers. Macromol Mater Eng. 303(9):1800218. doi:10.1002/mame.201800218
  • Jiao X, Shen S, Shi T. 2015. One-pot preparation of a novel monolith for high performance liquid chromatography applications. J Chromatogr B. 1007:100–109. doi:10.1016/j.jchromb.2015.10.028
  • Kamin Z, Bono A, Leong LY. 2017. Simulation and optimization of the utilization of triethylene glycol in a natural gas dehydration process. Chem Prod Process Model. 12:1–9. doi:10.1515/cppm-2017-0017.
  • Lee Y, Wadsworth LC. 1990. Structure and filtration properties of melt blown polypropylene webs. Polym Eng Sci. 30(22):1413–1419. doi:10.1002/pen.760302202
  • Lou H, Li W, Li C, Wang X. 2013. Systematic investigation on parameters of solution blown micro/nanofibers using response surface methodology based on box-Behnken design. J Appl Polym Sci. 130(2):1383–1391. doi:10.1002/app.39317
  • Mahalingam S, Edirisinghe M. 2013. Forming of polymer nanofibers by a pressurised gyration process. Macromol Rapid Commun. 34(14):1134–1139. doi:10.1002/marc.201300339
  • Misson M, Dai S, Jin B, Chen B.H, Zhang H. 2016. Manipulation of nanofiber-based β-galactosidase nanoenvironment for enhancement of galacto-oligosaccharide production. J Biotechnol. 222:56–64. doi:10.1016/j.jbiotec.2016.02.014
  • Nayak R. 2017. Polypropylene nanofibers: melt electrospinning versus meltblowing. Springer International Publishing AG: Switzerland.
  • Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L. 2014. Structural and mechanical properties of polypropylene nanofibres fabricated by meltblowing. J Text Inst. 106(6):629–640. doi:10.1080/00405000.2014.933512
  • Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L, Peeters G, Nichols L, O’Shea M. 2012. Fabrication and characterisation of nanofibres by meltblowing and melt electrospinning. Adv Mater Res. 472–475:1294–1299. doi:10.4028/www.scientific.net/AMR.472-475.1294
  • Raimi-Abraham BT, Mahalingam S, Edirisinghe M, Craig DQM. 2014. Generation of poly(N-vinylpyrrolidone) nanofibres using pressurised gyration. Mater Sci Eng C. 39:168–176. doi:10.1016/j.msec.2014.02.016
  • Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK. 1994. Recommendations for the characterization of porous solids. Pure Appl Chem. 66(8):1739–1758. doi:10.1351/pac199466081739
  • Sarbatly R, Krishnaiah D, Kamin Z. 2016. A review of polymer nanofibres by electrospinning and their application in oil-water separation for cleaning up marine oil spills. Mar Pollut Bull. 106(1-2):8–16. doi:10.1016/j.marpolbul.2016.03.037
  • Svec F. 2010. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A. 1217(6):902–924. doi:10.1016/j.chroma.2009.09.073
  • Tan DH, Zhou C, Ellison CJ, Kumar S, Macosko CW, Bates FS. 2010. Meltblown fibers: influence of viscosity and elasticity on diameter distribution. J Nonnewton Fluid Mech. 165(15-16):892–900. doi:10.1016/j.jnnfm.2010.04.012
  • Uppal R, Bhat G, Eash C, Akato K. 2013. Meltblown nanofiber media for enhanced quality factor. Fibers Polym. 14(4):660–668. doi:10.1007/s12221-013-0660-z
  • Xin Y, Xiong Q, Bai Q, Miyamoto M, Li C, Shen Y, Uyama H. 2017. A hierarchically porous cellulose monolith: a template-free fabricated, morphology-tunable, and easily functionalizable platform. Carbohydr Polym. 157:429–437. doi:10.1016/j.carbpol.2016.10.006
  • Zhang D, Sun C, Wadsworth LC. 2001. Modeling the mono- and bicomponent fiber meltblown process with surface response methodology. Text Res J. 71(4):301–308. doi:10.1177/004051750107100404

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.