214
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation and modeling of the viscosity of some water-based nanofluids

, , , , , & show all

References

  • Anoop K, Sundararajan T, Das S. K. 2009. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transfer. 52(9–10):2189–2195. doi:10.1016/j.ijheatmasstransfer.2007.11.063
  • Asadi A. 2018. A guideline towards easing the decision-making process in selecting an effective nanofluid as a heat transfer fluid. Energy Convers Manage. 175:1–10. doi:10.1016/j.enconman.2018.08.101
  • Asadi A, Alarifi I. M, Ali V, Nguyen H. M. 2019. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: finding the optimum ultrasonication time. Ultrason Sonochem. 58:104639. doi:10.1016/j.ultsonch.2019.104639
  • Asadi A, Asadi M, Rezaei M, Siahmargoi M, Asadi F. 2016. The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: an experimental study. Int Commun Heat Mass Transfer. 78:48–53. doi:10.1016/j.icheatmasstransfer.2016.08.021
  • Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. 2018. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transfer. 117:474–486. doi:10.1016/j.ijheatmasstransfer.2017.10.036
  • Asadi A, Asadi M, Siahmargoi M, Asadi T, Andarati MG. 2017. The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: an experimental investigation. Int J Heat Mass Transfer. 108:191–198. doi:10.1016/j.ijheatmasstransfer.2016.12.022
  • Asadi M, Asadi A. 2016. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental investigation and new correlation in different temperatures and solid concentrations. Int Commun Heat Mass Transfer. 76:41–45. doi:10.1016/j.icheatmasstransfer.2016.05.019
  • Batchelor G. 1977. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 83(1):97–117. doi:10.1017/S0022112077001062
  • Boschini F, Rulmont A, Cloots R, Moreno R. 2009. Rheological behaviour of BaZrO3 suspensions in non-aqueous media. Ceram Int. 35(3):1007–1013. doi:10.1016/j.ceramint.2008.04.012
  • Brinkman H C. 1952. The Viscosity of Concentrated Suspensions and Solutions. J Chem Phys. 20(4):571. doi:10.1063/1.1700493.
  • Burdett JK, Hughbanks T, Miller GJ, Richardson JW, Smith JV. 1987. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J Am Chem Soc. 109(12):3639–3646. doi:10.1021/ja00246a021
  • Chandrasekar M, Suresh S, Bose AC. 2010. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci. 34(2):210–216. doi:10.1016/j.expthermflusci.2009.10.022
  • Chen H, Ding Y, He Y, Tan C. 2007. Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett. 444(4–6):333–337. doi:10.1016/j.cplett.2007.07.046
  • Chen H, Ding Y, Tan C. 2007. Rheological behaviour of nanofluids. New J Phys. 9(10):367–367. doi:10.1088/1367-2630/9/10/367
  • Chen H, Witharana S, Jin Y, Kim C, Ding Y. 2009. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology. 7(2):151–157. doi:10.1016/j.partic.2009.01.005
  • Chevalier J, Tillement O, Ayela F. 2007. Rheological properties of nanofluids flowing through microchannels. Appl Phys Lett. 91(23):233103. doi:10.1063/1.2821117
  • Choi SU. 2009. Nanofluids: from vision to reality through research. J. Heat Transfer. 131:33106.
  • Corcione M. 2011. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manage. 52(1):789–793. doi:10.1016/j.enconman.2010.06.072
  • Duangthongsuk W, Wongwises S. 2009. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci. 33(4):706–714.
  • Einstein A. 1906. Eine neue bestimmung der moleküldimensionen. Ann Phys. 324(2):289–306. doi:10.1002/andp.19063240204
  • Esfe MH, Goodarzi M, Reiszadeh M, Afrand M. 2019. Evaluation of MWCNTs-ZnO/5W50 nanolubricant by design of an artificial neural network for predicting viscosity and its optimization. J Mol Liq. 277:921–931. doi:10.1016/j.molliq.2018.08.047
  • Esfe MH, Reiszadeh M, Esfandeh S, Afrand M. 2018. Optimization of MWCNTs (10%)–Al2O3 (90%)/5W50 nanofluid viscosity using experimental data and artificial neural network. Physica A. 512:731–744. doi:10.1016/j.physa.2018.07.040
  • Feret FR, Roy D, Boulanger C. 2000. Determination of alpha and beta alumina in ceramic alumina by X-ray diffraction. Spectrochim Acta, Part B. 55(7):1051–1061. doi:10.1016/S0584-8547(00)00225-1
  • Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JB, Ren ZF, Kang YT, Ohtani H, Nanda J, et al. 2008. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys. 103(7):74301. doi:10.1063/1.2902483
  • Godson L, Raja B, Lal DM, Wongwises S. 2010. Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Exp Heat Transfer. 23(4):317–332. doi:10.1080/08916150903564796
  • He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. 2007. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transfer. 50(11–12):2272–2281. doi:10.1016/j.ijheatmasstransfer.2006.10.024
  • Ishizawa N, Miyata T, Minato I, Marumo F, Iwai S. 1980. A structural investigation of α-Al2O3 at 2170 K. Acta Crystallogr B Struct Sci. 36(2):228–230. doi:10.1107/S0567740880002981
  • Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi S. 2014. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Physica A. 402:150–168. doi:10.1016/j.physa.2014.01.057
  • Khodadadi H, Toghraie D, Karimipour A. 2019. Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid. Powder Technol. 342:166–180. doi:10.1016/j.powtec.2018.09.076
  • Ko GH, Heo K, Lee K, Kim DS, Kim C, Sohn Y, Choi M. 2007. An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube. Int J Heat Mass Transfer. 50(23–24):4749–4753. doi:10.1016/j.ijheatmasstransfer.2007.03.029
  • Kole M, Dey T. 2011. Effect of aggregation on the viscosity of copper oxide–gear oil nanofluids. Int J Therm Sci. 50(9):1741–1747. doi:10.1016/j.ijthermalsci.2011.03.027
  • Kulkarni DP, Das DK, Vajjha R. S. 2009. Application of nanofluids in heating buildings and reducing pollution. Appl Energy. 86(12):2566–2573.
  • Lu W-Q, Fan Q-M. 2008. Study for the particle’s scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method. Eng Anal Boundary Elem. 32(4):282–289. doi:10.1016/j.enganabound.2007.10.006
  • Mahbubul I, Elcioglu EB, Saidur R, Amalina M. 2017. Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason Sonochem. 37:360–367. doi:10.1016/j.ultsonch.2017.01.024
  • Mahbubul I, Saidur R, Amalina M. 2012. Latest developments on the viscosity of nanofluids. Int J Heat Mass Transfer. 55(4):874–885. doi:10.1016/j.ijheatmasstransfer.2011.10.021
  • Masoumi N, Sohrabi N, Behzadmehr A. 2009. A new model for calculating the effective viscosity of nanofluids. J Phys D: Appl Phys. 42(5):55501. doi:10.1088/0022-3727/42/5/055501
  • Maxwell J. 1873. Electricity and magnetism. Oxford, UK: Claredon Press.
  • Murshed S, Leong K, Yang C. 2008. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 47(5):560–568. doi:10.1016/j.ijthermalsci.2007.05.004
  • Nafchi PM, Karimipour A, Afrand M. 2019. The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties. Physica A. 516:1–18. doi:10.1016/j.physa.2018.10.015
  • Namburu P, Kulkarni D, Dandekar A, Das D. 2007. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett. 2(3):67–71. doi:10.1049/mnl:20070037
  • Namburu PK, Kulkarni DP, Misra D, Das DK. 2007. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci. 32(2):397–402. doi:10.1016/j.expthermflusci.2007.05.001
  • Nguyen C, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Mintsa HA. 2008. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci. 47(2):103–111. doi:10.1016/j.ijthermalsci.2007.01.033
  • Nguyen C, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, Mintsa HA. 2007. Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int J Heat Fluid Flow. 28(6):1492–1506. doi:10.1016/j.ijheatfluidflow.2007.02.004
  • Prasher R, Song D, Wang J, Phelan P. 2006. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 89(13):133108. doi:10.1063/1.2356113
  • Roscoe R. 1952. The viscosity of suspensions of rigid spheres. Br J Appl Phys. 3(8):267–269. doi:10.1088/0508-3443/3/8/306
  • Sekhar YR, Sharma K. 2015. Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations. J Exp Nanosci. 10(2):86–102. doi:10.1080/17458080.2013.796595
  • Thomas CU, Muthukumar M. 1991. Three‐body hydrodynamic effects on viscosity of suspensions of spheres. J Chem Phys. 94(7):5180–5189. doi:10.1063/1.460555
  • Timofeeva E. V, Gavrilov A. N, McCloskey J. M, Tolmachev Y. V, Sprunt S, Lopatina L. M, Selinger JV. 2007. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 76(6):61203. doi:10.1103/PhysRevE.76.061203
  • Turgut A, Tavman I, Chirtoc M, Schuchmann H, Sauter C, Tavman S. 2009. Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. Int J Thermophys. 30(4):1213–1226. doi:10.1007/s10765-009-0594-2
  • Vakili-Nezhaad G, Dorany A. 2012. Effect of single-walled carbon nanotube on the viscosity of lubricants. Energy Procedia. 14:512–517. doi:10.1016/j.egypro.2011.12.967
  • Vakilinejad A, Aroon MA, Al-Abri M, Bahmanyar H, Myint MTZ, Vakili-Nezhaad GR. 2018. Experimental and theoretical investigation of thermal conductivity of some water-based nanofluids. Chem Eng Commun. 205:610–623.
  • Vand V. 1948. Viscosity of solutions and suspensions. I. Theory. J Phys Chem. 52(2):277–299. doi:10.1021/j150458a001
  • Wagner W, Kretzschmar HJ. 2008. International steam tables-properties of water and steam based on the industrial formulation IAPWS-IF97. Berlin: Springer.
  • Wang X, Xu X, Choi SUS. 1999. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer. 13(4):474–480. doi:10.2514/2.6486
  • Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G. 2005. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transfer. 48(6):1107–1116. doi:10.1016/j.ijheatmasstransfer.2004.09.038
  • Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS. 2008. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices. 10(2):321–328. doi:10.1007/s10544-007-9139-2
  • Zhu H, Li C, Wu D, Zhang C, Yin Y. 2010. Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids. Sci China Technol Sci. 53(2):360–368. doi:10.1007/s11431-010-0032-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.