186
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Extraction of polyphenols from Clinacanthus nutans Lindau (C. nutans) by vacuum solvent-free microwave extraction (V-SFME)

, ORCID Icon &

References

  • Alam A, Ferdosh S, Ghafoor K, Hakim A, Juraimi AS, Khatib A, Sarker ZI. 2016. Clinacanthus nutans: a review of the medicinal uses, pharmacology and phytochemistry. Asian Pac J Trop Med. 9(4):402–409. doi:10.1016/j.apjtm.2016.03.011
  • Alara OR, Abdurahman NH, Abdul Mudalip SK, Olalere OA. 2018. Microwave-assisted extraction of Vernonia amygdalina leaf for optimal recovery of total phenolic content. J Appl Res Med Aromat Plants. 10:16–24. doi:10.1016/j.jarmap.2018.04.004
  • Alfaro MJ, Bélanger JM, Padilla FC, Jocelyn Paré JR. 2003. Influence of solvent, matrix dielectric properties, and applied power on the liquid-phase microwave-assisted processes (MAP™) extraction of ginger (Zingiber officinale). Food Res Int. 36(5):499–504. doi:10.1016/S0963-9969(02)00198-9.
  • Altemimi A, Lakhssassi N, Baharlouei A, Watson D, Lightfoot D. 2017. Phytochemicals: extraction, isolation and identification of bioactive compounds from plant extracts. Plants. 6(4):42–23. doi:10.3390/plants6040042
  • Alupului A, Cǎlinescu I, Lavric V. 2012. Microwave extraction of active principles from medicinal plants. UPB Sci Bull Ser B Chem Mater Sci. 74(2):130–142.
  • Álvarez A, Poejo J, Matias AA, Duarte CMM, Cocero MJ, Mato RB. 2017. Microwave pretreatment to improve extraction efficiency and polyphenol extract richness from grape pomace. Effect on antioxidant bioactivity. Food Bioprod Process. 106:162–170. doi:10.1016/j.fbp.2017.09.007
  • Ambros S, Foerst P, Kulozik U. 2018. Temperature-controlled microwave-vacuum drying of lactic acid bacteria: impact of drying conditions on process and product characteristics. J Food Eng. 224:80–87. doi:10.1016/j.jfoodeng.2017.12.025
  • Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM. 2013. Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng. 117(4):426–436. doi:10.1016/j.fbp.2017.09.007
  • Bayramoglu B, Sahin S, Sumnu G. 2008. Solvent-free microwave extraction of essential oil from oregano. J Food Eng. 88(4):535–540. doi:10.1016/j.indcrop.2018.04.021
  • Bloomfield LA. 2008. Heat and phase transitions. In: Johnson S, editor. How everything works: making physics out of ordinary. 5th ed. Virginia (US): John Wiley & Sons. p. 221–230.
  • Boldor D, Kanitkar A, Terigar BG, Leonardi C, Lima M, Breitenbeck GA. 2010. Microwave assisted extraction of biodiesel feedstock from the seeds of invasive Chinese tallow tree. Environ Sci Technol. 44(10):4019–4025. doi:10.1021/es100143z
  • Boukroufa M, Boutekedjiret C, Petigny L, Rakotomanomana N, Chemat F. 2015. Biorefinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrason Sonochem. 24:72–79. doi:10.1016/j.ultsonch.2014.11.015
  • Božović M, Navarra A, Garzoli S, Pepi F, Ragno R. 2017. Essential oil extraction: 24-hour steam distillation systematic methodology. Nat Prod Res. 20:1–10. doi:10.1080/14786419.2017.1309534
  • Castejoń N, Luna P, Señoráns FJ. 2018. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents. Food Chem. 244:75–82. doi:10.1016/j.foodchem.2017.10.014
  • Chan C-H, Yusoff R, Ngoh G-C. 2013. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy. Food Chem. 140(1-2):147–153. doi:10.1016/j.foodchem.2013.02.057.
  • Chan C-H, Yusoff R, Ngoh G-C, Kung FW. 2011. Microwave-assisted extractions of active ingredients from plants. J Chromatogr A. 1218(37):6213–6225. doi:10.1016/j.chroma.2011.07.040
  • Che Sulaiman IS, Basri M, Masoumi HRF, Chee WJ, Ashari SE, Ismail M. 2017. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem Cent J. 11(54):1–11. doi:10.1186/s13065-017-0285-1
  • Dahmoune F, Nayak B, Moussi K, Remini H, Madani K. 2015. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 166:585–595. doi:10.1016/j.foodchem.2014.06.066
  • Dai J, Mumper RJ. 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 15(10):7313–7352. doi:10.3390/molecules15107313
  • Das I, Arora A. 2018. Alternate microwave and convective hot air application for rapid mushroom drying. J Food Eng. 223:208–219. doi:10.1016/j.jfoodeng.2017.10.018
  • Destandau E, Michel T, Elfakir C. 2013. Microwave-assisted extraction. In: Rostagno MA, Prado JM, editors. Natural products extraction: principles and applications. Vol. 21. Cambridge (UK): Royal Society of Chemistry. p. 113–156.
  • Ferhat MA, Meklati BY, Smadja J, Chemat F. 2006. An improved microwave Clavenger apparatus for distillation of essential oils from orange peel. J Chromator A. 1112(1-2):121–126. doi:10.1016/j.chroma.2005.12.030
  • Filly A, Fabiano-Tixier A S, Louis C, Fernandez X, Chemat F. 2016. Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. Comptes Rendus Chim. 19(6):707–717. doi:10.1016/j.crci.2016.01.018
  • Filly A, Fernandez X, Minuti M, Visinoni F, Cravotto G, Chemat F. 2014. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chem. 150:193–198. doi:10.1016/j.foodchem.2013.10.139
  • Gill R. 2015. Equilibrium in geological systems. In: Gill R, editor. Chemical fundamentals of geology and environmental geoscience. 3rd ed. Sussex (UK): John Wiley & Sons. p. 14–42.
  • Grigoras CG, Destandau E, Zubrzycki S, Elfakir C. 2012. Sweet cherries anthocyanins: an environmental friendly extraction and purification method. Sep Purif Technol. 100:51–58. doi:10.1016/j.seppur.2012.08.032
  • Ji L, Zu Y-G, Fu Y-J, Yang Y-C, Li S-M, Li Z-N, Wink M. 2010. Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia Bunge.) kernel and evaluation of its antioxidant activity. Innov Food Sci Emerg Technol. 11:637–643. doi:10.1016/j.ifset.2010.06.004
  • Kamarudin MNA, Sarker MMR, Kadir AH, Ming LC. 2017. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Clinacanthus nutans (Burm. f.) Lindau: A comprehensive review. J Ethnopharmacol. 206:1–66. doi:10.1016/j.jep.2017.05.007
  • Kankara SS, Mustafa M, Ibrahim HM, Nulit R. 2014. Effect of drying methods, solid-solvent ratio, extraction time and extraction temperature on phenolic antioxidants and antioxidant activity of Guiera senegalensis J.F. Gmel (Combretaceae) leaves water extract. Am J Phytomed Clin Ther. 12(2):1378–1392.
  • Khoddami A, Wilkes M, Roberts T. 2013. Techniques for analysis of plant phenolic compounds. Molecules. 18(2):2328–2375. doi:10.3390/molecules18022328
  • Klinbun W, Rattanadecho P. 2016. Investigation into heat transfer and fluid flow characteristics of liquid two-layer and emulsion in microwave processing. Int Commun Heat Mass. 70:115–126. doi:10.1016/j.icheatmasstransfer.2015.12.005
  • Kok LP, Boon ME, Smid M. 1993. The problem of hot spots in microwave equipment used for preparatory techniques - theory and practice. Scanning. 15(2):100–109. doi:10.1002/sca.4950150206
  • Koretsky MD. 2012. Steam tables. Engineering and chemical thermodynamics. 2nd ed. Hoboken (NJ): John Wiley & Sons.
  • Kumar SPJ, Prasad SR, Banerjee R, Agarwal DK, Kulkarni KS, Ramesh KV. 2017. Green solvents and technologies for oil extraction from oilseeds. Chem Cent J. 11(9):9–7. doi:10.1186/s13065-017-0238-8
  • Kusuma HS, Altway A, Mahfud M. 2018. Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin Benth) leaves. J Ind Eng Chem. 58:343–348. doi:10.1016/j.jiec.2017.09.047
  • Li J, Zu Y-G, Fu Y-J, Yang Y-C, Li S-M, Li Z-N, Wink M. 2010. Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia Bunge.) kernel and evaluation of its antioxidant activity. Innov Food Sci Emerg. 11(4):637–643. doi:10.1016/j.ifset.2010.06.004
  • Liang H, Hu Z, Cai M. 2008. Sep Purif Technol. 61(3):266. doi:10.1016/j.seppur.2007.10.016
  • Liazid A, Palma A, Brigui J, Barroso CG. 2007. Investigation on phenolic compounds stability during microwave-assisted extraction. J Chromatogr A. 1140(1-2):29–34. doi:10.1016/j.chroma.2006.11.040
  • Liu Z, Deng B, Li S, Zou Z. 2018. Optimization of solvent-free microwave assisted extraction of essential oil from Cinnamomum camphora leaves. Ind Crop Prod. 124:353–362. doi:10.1016/j.indcrop.2018.08.016
  • Lovrić V, Putnik P, Kovaćević DB, Jukić M, Dragović-Uzelac VD. 2017. Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers. Food Technol Biotechnol. 55(2):243–250. doi:10.17113/ftb.55.02.17.4687
  • Lucchesi ME, Smadja J, Bradshaw S, Louw W, Chemat F. 2007. Solvent-free microwave extraction of Elletaria cardamomum L.: a multivariate study of a new technique for the extraction of essential oil. J Food Eng. 79(3):1079–1086. doi:10.1016/j.jfoodeng.2006.03.029
  • Maestri DM, Nepote V, Lamarque AL, Zygadlo JA, editors. 2006. Natural products as antioxidants. Kerala (IN): Research Signpost (Imperato F, editor. Phytochemistry: Advances in Research; vol. 37).
  • Mandal V, Mohan Y, Hemalatha S. 2007. Microwave assisted extraction - an innovative and promising extraction tool for medicinal plant research. Pharmacognosy 1:7–18.
  • Michel T, Destandau E, Elfakir C. 2011. Evaluation of a simple and promising method for extraction of antioxidants from sea buckthorn (Hippopae rhamnoides L.) berries: pressurised solvent-free microwave assisted extraction. Food Chem. 126(3):1380–1386. doi:10.1039/9781849737579-00113
  • Minatel IO, Borges CV, Ferreira MI, Gomez HAG, Chen C-Y, Lima GP. 2017. Phenolic compounds: functional properties, impact of processing and bioavailability. In: Sato-Hernandez M, Palma-Tenango M, Garcia-Mateos M, editors. Phenolic compounds - biological activity. Rijeka (HR): IntechOpen. p. 1–24.
  • Muhamad II, Hassan ND, Mamat SNH, Nawi NM, Rashid WA, Tan NA. 2017. Extraction technologies and solvents of phytocompounds from plant materials: physicochemical characterization and identification of ingredients and bioactive compounds from plant extract using various instrumentations. In: Grumezescu AM, Holban AM, editors. Extraction by physicochemical methods in food. Vol. 4. London (UK): Elsevier. p. 524–560.
  • Mustafa A, Turner C. 2011. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal Chim Acta. 703(1):8–18. doi:10.1016/j.aca.2011.07.018
  • Mustapa AN, Martin Á, Gallego JR, Mato RB, Cocero MJ. 2015. Microwave-assisted extraction of polyphenols from Clinacanthus nutans Lindau medicinal plant: energy perspective and kinetics modelling. Chem Eng Process. 97:66–74. doi:10.1016/j.cep.2015.08.013
  • Mustapa AN, Martin Á, Mato RB, Cocero MJ. 2015. Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical carbon dioxide extraction. Ind Crops Prod. 74:83–94. doi:10.1016/j.indcrop.2015.04.035
  • Nkhili E, Tomao V, El Hajji H, El Boustani E-S, Chemat F, Dangles O. 2009. Microwave-assisted water extraction of green tea polyphenols. Phytochem Anal. 20(5):408–415. doi:10.1002/pca.1141
  • Nn A. 2015. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants. 4(3):3–8. doi:10.4172/2167-0412.1000196
  • Okoh OO, Sadimenko AP, Afolayan AJ. 2010. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem. 120(1):308–312. doi:10.1016/j.foodchem.2009.09.084
  • Pimentel-Moral S, Borrás-Linares I, Lozano-Sánchez J, Arráez-Román D, Martínez-Férez A, Segura-Carretero A. 2018. Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds. J Pharmaceut Biomed. 156:313–322. doi:10.1016/j.jpba.2018.04.050
  • P’ng XW, Akowuah GA, Chin JH. 2012. Acute oral toxicity study of Clinacanthus nutans in mice. Int J Pharm Sci Res. 3(11):4202–4205.
  • Périno-Issartier S, Ginies C, Cravotto G, Chemat F. 2013. A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation. J. Chromatogr. A. 1305:41–47. doi:10.1016/j.chroma.2013.07.024.
  • Radojković M, Zeković Z, Jokić S, Vidović S, Lepojević Z, Milošević S. 2012. Optimization of solid-liquid extraction of antioxidants from black mulberry leaves by response surface methodology. Food Technol Biotechnol. 50(2):167–176. doi:10.1002/ejoc.201200177
  • Saad WZ, Hashim M, Ahmad S, Abdullah N. 2014. Effect of heat treatment on total phenolic contents, antioxidant and anti-inflammatory activities of Pleurotus Sajor-Caju extract. Int J Food Prop. 17(1):219–225. doi:10.1080/10942912.2011.619290
  • Sahraoui N, Vian MA, Bornard I, Boutekedjiret C, Chemat F. 2008. Improved microwave steam distillation apparatus for isolation of essential oils. Comparison with conventional steam distillation. J Chromator A. 1210(2):229–233. doi:10.1016/j.chroma.2008.09.078
  • Sakdarat S, Shuyprom A, Pientong C, Ekalaksananan T, Thongchai S. 2009. Bioactive constituents from the leaves of Clinacanthus nutans Lindau. Bioorg Med Chem. 17(5):1857–1860.
  • Seidel V. 2012. Initial and bulk extraction of natural isolation. In: Sarker SD, Nahar L, editors. Natural products isolation. London (UK): Springer. p. 27–72 (Walker JM, editor. Methods in molecular biology; vol. 864).
  • Seoane PR, Flórez-Fernández N, Piñeiro EC, González HD. 2017. Microwave-assisted water extraction. In: Gonzalez HD, Munoz MJG, editors. Water extraction of bioactive compounds. Cambridge (MA): Elsevier. p. 163–198.
  • Sharma K, Ko EY, Assefa AD, Ha S, Nile HS, Lee ET, Park SW. 2015. Temperature-dependent studies on the total phenolics, flavanoids, antioxidant activities, and sugar content in six onion varieties. J Food Drug Anal. 23(2):243–252. doi:10.1016/j.jfda.2014.10.005
  • Shi J, Yu J, Pohorly J, Young JC, Bryan M, Wu Y. 2003. Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. J Food Agric Environ. 1(2):42–47.
  • Sólyom K, Solá R, Cocero MJ, Mato RB. 2014. Thermal degradation of grape marc polyphenols. Food Chem. 159:361–366. doi:10.1016/j.foodchem.2014.03.021.
  • Song C, Wu T, Li Z, Li J, Chen H. 2018. Analysis of heat transfer characteristics of blackberries during microwave vacuum heating. J Food Eng. 223:70–78. doi:10.1016/j.jfoodeng.2017.11.040
  • Spigno G, De Faveri DM. 2009. Microwave-assisted extraction of tea phenols: a phenomenological study. J Food Eng. 93(2):210–217. doi:10.1016/j.jfoodeng.2009.01.006
  • Tatke P, Jaiswal Y. 2011. An overview of microwave assisted extraction and its applications in herbal drug research. Res J Med Plant. 5(1):21–31. doi:10.3923/rjmp.2011.21.31
  • Vadivambal R, Jayas DS. 2010. Non-uniform temperature distribution during microwave heating of food materials - a review. Food Bioprocess Technol. 3(2):161–171. doi:10.1007/s11947-008-0136-0
  • Veggi PC, Martinez J, Meireles M. 2013. Fundamentals of microwave extraction. In: Chemat F, Cravotto G, editors. Microwave-assisted extraction for bioactive compounds. London (UK): Springer. p. 15–17. (Barbosa-Cánovas GV, editor. Food engineering series; vol. 4).
  • Vinatoru M, Mason T.J, Calinescu I. 2017. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. Trends Anal Chem. 97:159–178. doi:10.1016/j.trac.2017.09.002
  • Wang J, Hong T, Xie T, Yang F, Hu Y, Zhu H. 2018. Impact of filled materials on the heating uniformity and safety of microwave heating solid stack materials. Processes. 6(11):220–213. doi:10.3390/pr6110220
  • Wang JX, Xiao XH, Li GK. 2008. Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. J Chromator A. 1198–1199(1–2):45–53. doi:10.1016/j.chroma.2008.05.045
  • Wang Z, Ding L, Li T, Zhou X, Wang L, Zhang H, Liu L, Li Y, Liu Z, Wang H, et al. 2006. Improved solvent-free microwave extraction of essential oil from dried Cuminum cyminum L. and Zanthoxylum bungeanum Maxim. J Chromator A. 1102(1-2):11–17. doi:10.1016/j.chroma.2005.10.032
  • Xiao XH, Wang JX, Wang G, Wang JY, Li GK. 2009. Evaluation of vacuum microwave-assisted extraction technique for the extraction of antioxidants from plant samples. J Chromatography A. 1216(51):8867–8873. doi:10.1016/j.chroma.2009.10.087
  • Yahaya R, Dash GK, Abdullah MS, Mathews A. 2015. Clinacanthus (burm. F.) Lindau: an useful medicinal plant of South-East Asia. Int J Pharmacog Phytochem Res. 7(6):1244–1250.
  • Yang L, Jiang JG, Li WF, Chen J, Wang DY, Zhu L. 2009. Optimum extraction process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology. J Sep Sci. 32(9):1437–1444. doi:10.1002/jssc.200800744
  • Yang Z, Yi H, Tang X, Zhao S, Yu Q, Gao F, Zhou Y, Wang J, Huang Y, Yang K, et al. 2017. Potential demonstrations of “hot spots” presence by adsorption-desorption of toluene vapor onto granular activated carbon under microwave radiation. J Chem Eng. 319:191–199. doi:10.1016/j.cej.2017.02.157
  • Yusof Z, Ramasamy S, Mahmood NZ, Yaacob JS. 2018. Vermicompost supplementation improves the stability of bioactive anthocyanin and phenolic compounds in Clinacanthus nutans Lindau. Molecules. 23(6): 1–13.1345. doi:10.3390/molecules2306

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.