103
Views
0
CrossRef citations to date
0
Altmetric
Articles

Magnetic separation of micron-sized particles: process study and regression modelling using moving least squares and multivariable power least squares method

, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahangaran F, Hassanzadeh A, Nouri S. 2013. Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int Nano Lett. 3(1):23. doi:10.1186/2228-5326-3-23
  • Asab G, Zereffa EA, Abdo Seghne T. 2020. Synthesis of silica-coated Fe3O4 nanoparticles by microemulsion method: characterization and evaluation of antimicrobial activity. Int J Biomater. 2020:4783612. doi:10.1155/2020/4783612
  • Atluri SN, Zhu T. 1998. A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech. 22(2):117–127. doi:10.1007/s004660050346
  • Belytschko T, Lu YY, Gu L. 1994. Element-free Galerkin methods. Int J Numer Meth Engng. 37(2):229–256. doi:10.1002/nme.1620370205
  • Bilotta GS, Brazier RE. 2008. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42(12):2849–2861. doi:10.1016/j.watres.2008.03.018
  • Cao F, Li M. 2015. Spherical data fitting by multiscale moving least squares. Appl Math Model. 39(12):3448–3458. doi:10.1016/j.apm.2014.11.047
  • Cheah CK, Tey WY. 2020. Construction on morphology of aquatic animals via moving least squares method. J Phys: Conf Ser. 1489:012014. doi:10.1088/1742-6596/1489/1/012014
  • Dong C, Chen W, Liu C. 2014. Preparation of novel magnetic chitosan nanoparticle and its application for removal of humic acid from aqueous solution. Appl Surf Sci. 292:1067–1076. doi:10.1016/j.apsusc.2013.12.125
  • Gallo-Cordova A, Morales MP, Mazarío E. 2019. Effect of the surface charge on the adsorption capacity of chromium(VI) of iron oxide magnetic nanoparticles prepared by microwave-assisted synthesis. Water 11(11):2372. doi:10.3390/w11112372
  • Grobbelaar JU. 2009. Turbidity. In: Likens GE, editor. Encyclopedia of inland waters. Oxford: Academic Press. p. 699–704.
  • Hassanzadeh M, Ghaemy M. 2017. An effective approach for the laboratory measurement and detection of creatinine by magnetic molecularly imprinted polymer nanoparticles. New J Chem. 41(6):2277–2286. doi:10.1039/C6NJ03540J
  • Hermosilla D, Ordóñez R, Blanco L, de la Fuente E, Blanco Á. 2012. pH and particle structure effects on silica removal by coagulation. Chem Eng Technol. 35(9):1632–1640. doi:10.1002/ceat.201100527
  • Ho YS, McKay G. 1999. Pseudo-second order model for sorption processes. Process Biochem. 34(5):451–465. doi:10.1016/S0032-9592(98)00112-5
  • Jain M, Yadav M, Kohout T, Lahtinen M, Garg VK, Sillanpää M. 2018. Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour Ind. 20:54–74. doi:10.1016/j.wri.2018.10.001
  • Jayasuriya AC. 2017. Chapter 8 - Production of micro- and nanoscale chitosan particles for biomedical applications. In: Jennings JA, Bumgardner JD, editors. Chitosan based biomaterials. Vol. 1. Amsterdam: Woodhead Publishing. p. 185–209.
  • Juliana N, Yeap SP. 2019. Effects of concentration and molecular weight of polycation on the precipitation of SiO2 particles and humic acid. Prog Energy Environ. 8:16–25.
  • Karimi Pasandideh E, Kakavandi B, Nasseri S, Mahvi AH, Nabizadeh R, Esrafili A, Rezaei Kalantary R. 2016. Silica-coated magnetite nanoparticles core-shell spheres (Fe3O4@SiO2) for natural organic matter removal . J Environ Health Sci Eng. 14:21–21. doi:10.1186/s40201-016-0262-y
  • Khuri AI, Mukhopadhyay S. 2010. Response surface methodology. WIREs Comp Stat. 2(2):128–149. doi:10.1002/wics.73
  • Kumar S, Koh J, Kim H, Gupta MK, Dutta PK. 2012. A new chitosan–thymine conjugate: Synthesis, characterization and biological activity. Int J Biol Macromol. 50(3):493–502. doi:10.1016/j.ijbiomac.2012.01.015
  • Lancaster P, Salkauskas K. 1981. Surfaces generated by moving least squares methods. Math Comp. 37(155):141–158. doi:10.2307/2007507
  • Lee CS, Robinson J, Chong MF. 2014. A review on application of flocculants in wastewater treatment. Process Saf Environ Prot. 92(6):489–508. doi:10.1016/j.psep.2014.04.010
  • Leshuk T, Holmes AB, Ranatunga D, Chen PZ, Jiang Y, Gu F. 2018. Magnetic flocculation for nanoparticle separation and catalyst recycling. Environ Sci Nano. 5(2):509–519. doi:10.1039/C7EN00827A
  • Manyangadze M, Chikuruwo NHM, Narsaiah TB, Chakra CS, Radhakumari M, Danha G. 2020. Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. S Afr J Chem Eng. 31:25–32. doi:10.1016/j.sajce.2019.11.003
  • Munasir TA. 2019. Synthesis and characterization of Fe3O4/SiO2 composite with in-situ method: TEOS as SiO2 NPs precursor. J Phys Conf Ser. 1171:012050. doi:10.1088/1742-6596/1171/1/012050
  • Murcia-Salvador A, Pellicer JA, Fortea MI, Gómez-López VM, Rodríguez-López MI, Núñez-Delicado E, Gabaldón JA. 2019. Adsorption of Direct Blue 78 using chitosan and cyclodextrins as adsorbents. Polymers 11:1003. doi:10.3390/polym11061003
  • Nikmah A, Taufiq A, Hidayat A. 2019. Synthesis and characterization of Fe3O4/SiO2 nanocomposites. IOP Conf Ser Earth Environ Sci. 276:012046. doi:10.1088/1755-1315/276/1/012046
  • Ojemaye MO, Okoh OO, Okoh AI. 2017. Surface modified magnetic nanoparticles as efficient adsorbents for heavy metal removal from wastewater: Progress and prospects. Mat Express. 7(6):439–456. doi:10.1166/mex.2017.1401
  • Önal Y. 2006. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot. J Hazard Mater. 137(3):1719–1728. doi:10.1016/j.jhazmat.2006.05.036
  • Park Y-M, Yeon K-M, Park C-h. 2020. Silica treatment technologies in reverse osmosis for industrial desalination: A review. Environ Eng Res. 25(6):819–829. doi:10.4491/eer.2019.353
  • Phanichphant S, Nakaruk A, Channei D. 2016. Photocatalytic activity of the binary composite CeO2/SiO2 for degradation of dye. Appl Surf Sci. 387:214–220. doi:10.1016/j.apsusc.2016.06.072
  • Shete PB, Patil RM, Ningthoujam RS, Ghosh SJ, Pawar SH. 2013. Magnetic core–shell structures for magnetic fluid hyperthermia therapy application. New J Chem. 37(11):3784–3792. doi:10.1039/c3nj00862b
  • Simonin J-P. 2016. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J. 300:254–263. doi:10.1016/j.cej.2016.04.079
  • Singh R. 2015. Chapter 2 - Water and membrane treatment. In: Singh R, editor. Membrane technology and engineering for water purification. 2nd ed. Oxford: Butterworth-Heinemann. p. 81–178.
  • Skaf DW, Punzi VL, Rolle JT, Kleinberg KA. 2020. Removal of micron-sized microplastic particles from simulated drinking water via alum coagulation. Chem Eng J. 386:123807. doi:10.1016/j.cej.2019.123807
  • Su T-L, Chiou C-S, Chen H-W. 2012. Preparation, photocatalytic activity, and recovery of magnetic photocatalyst for decomposition of benzoic acid. Int J Photoenergy. 2012:1–8. doi:10.1155/2012/909678
  • Tan LS, Lim MT, Tey WY. 2020. Characterization of ozone production from multi-cylinder reactor in non-thermal plasma device using multivariable power least squares method. IOP Conf Ser Mater Sci Eng. 808:012027. doi:10.1088/1757-899X/808/1/012027
  • Tey WY, Lee KM, Asako Y, Tan LK, Arai N. 2020. Multivariable power least squares method: Complementary tool for response surface methodology. Ain Shams Eng J. 11(1):161–169. doi:10.1016/j.asej.2019.08.002
  • Toh PY, Ng BW, Ahmad AL, Chieh DCJ, Lim J. 2014. Magnetophoretic separation of Chlorella sp.: Role of cationic polymer binder. Process Saf Environ Prot. 92(6):515–521. doi:10.1016/j.psep.2014.03.010
  • Wang Y, Hu L, Zhang G, Yan T, Yan L, Wei Q, Du B. 2017. Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes. J Colloid Interf Sci. 494:380–388. doi:10.1016/j.jcis.2017.01.105
  • Wang Y, Shi L, Gao L, Wei Q, Cui L, Hu L, Yan L, Du B. 2015. The removal of lead ions from aqueous solution by using magnetic hydroxypropyl chitosan/oxidized multiwalled carbon nanotubes composites. J Colloid Interface Sci. 451:7–14. doi:10.1016/j.jcis.2015.03.048
  • Yang S, Zeng T, Li Y, Liu J, Chen Q, Zhou J, Ye Y, Tang B. 2015. Preparation of graphene oxide decorated Fe3O4@SiO2 nanocomposites with superior adsorption capacity and SERS detection for organic dyes. J Nanomater. 2015:1–8. doi:10.1155/2015/817924
  • Yao M, Nan J, Chen T. 2014. Effect of particle size distribution on turbidity under various water quality levels during flocculation processes. Desalination 354:116–124. doi:10.1016/j.desal.2014.09.029
  • Yeap SP, Ahmad AL, Ooi BS, Lim J. 2012. Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 28(42):14878–14891. doi:10.1021/la303169g
  • Yeap SP, Chon KC. 2019. Interfacial interactions of bare and functionalized nanoparticles with quartz sand: Role of humic acid and coexisting divalent cations. Environ Nanotechnol Monit Manag. 11:100213. doi:10.1016/j.enmm.2019.100213
  • Yeap SP, Lim J, Ooi BS, Ahmad AL. 2018. Feasibility of electrostatic-mediated post-functionalization to induce long term colloidal stability and stability after freeze drying of amphoteric nanoparticles. Colloids Interface Sci Commun. 23:14–20. doi:10.1016/j.colcom.2018.02.003
  • Zhang J, Deng R-J, Ren B-Z, Hou B, Hursthouse A. 2019. Preparation of a novel Fe3O4/HCO composite adsorbent and the mechanism for the removal of antimony (III) from aqueous solution. Sci Rep. 9(1):13021. doi:10.1038/s41598-019-49679-9
  • Zhi S, Zhang S. 2014. Effect of co-existing ions on electrode behavior in electrocoagulation process for silica removal. Desalin Water Treat. 56(11):1–3066. doi:10.1080/19443994.2014.966277
  • Zulfikar MA, Afrita S, Wahyuningrum D, Ledyastuti M. 2016. Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption. Environ Nanotechnol Monit Manag. 6:64–75. doi:10.1016/j.enmm.2016.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.