282
Views
0
CrossRef citations to date
0
Altmetric
ARTICLE

Low thermal oxidation of gaseous toluene over Cu/Ce single-doped and co-doped OMS-2 on different synthetic routes

ORCID Icon, , , ORCID Icon, ORCID Icon, , & ORCID Icon show all

References

  • Birkner N, Navrotsky A. 2017. Thermodynamics of manganese oxides: sodium, potassium, and calcium birnessite and cryptomelane. Proc Natl Acad Sci U S A. 114(7):E1046–1053. doi:10.1073/PNAS.1620427114.
  • Chen J, Chen X, Yan D, Jiang M, Xu W, Yu H, Jia H. 2019. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants. Appl Catal B: Environ. 250:396–407. doi:10.1016/j.apcatb.2019.03.042
  • Chen Y, Huang Z, Zhou M, Ma Z, Chen J, Tang X. 2017. Single silver adatoms on nanostructured manganese oxide surfaces: boosting oxygen activation for benzene abatement. Environ Sci Technol. 51(4):2304–2311. doi:10.1021/acs.est.6b04340
  • Chen X, Yang G, Valtchev V. 2020. Environmentally benign synthesis of crystalline nanosized molecular sieves. Green Energy Environ. 5(4):394–404. doi:10.1016/j.gee.2020.10.014
  • De Luna MD, Millanar JM, Yodsa-Nga A, Wantala K. 2017. Gas phase catalytic oxidation of vocs using hydrothermally synthesized nest-like K-OMS 2 catalyst. JSM. 46(2):275–283. doi:10.17576/jsm-2017-4602-12
  • Fayaz F, Danh HT, Nguyen-Huy C, Vu KB, Abdullah B, Vo DVN. 2016. Promotional effect of Ce-dopant on Al2O3-supported co catalysts for syngas production via CO2 reforming of ethanol. Procedia Eng. 148:646–653. doi:10.1016/j.proeng.2016.06.530
  • Genuino HC, Dharmarathna S, Njagi EC, Mei MC, Suib SL. 2012. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts. J Phys Chem C. 116(22):12066–12078. doi:10.1021/jp301342f
  • González-Martín J, Kraakman NJR, Pérez C, Lebrero R, Muñoz R. 2021. A state-of-the-art review on indoor air pollution and strategies for indoor air pollution control . Chemosphere. 262:128376. doi:10.1016/j.chemosphere.2020.128376
  • Guo Y, Wen M, Li G, An T. 2021. Recent advances in voc elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl Catal B: Environ. 281:119447. doi:10.1016/j.apcatb.2020.119447
  • Hao YX, Li L, Lu Z, Yu X, Zhang X, Yang X. 2020. OMS-2 nanorods filled with Co-ion in the tunnels as efficient electron conduits and regulatory substance for oxygen reduction. Appl Catal B: Environ. 279:119373. doi:10.1016/j.apcatb.2020.119373
  • He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z. 2019. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev. 119(7):4471–4568. doi:10.1021/acs.chemrev.8b00408
  • Hou J, Li Y, Mao M, Zhao X, Yue Y. 2014. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation. Nanoscale. 6(24):15048–15058. doi:10.1039/c4nr04142a
  • Hou J, Liu L, Li Y, Mao M, Lv H, Zhao X. 2013. Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation. Environ Sci Technol. 47(23):13730–13736. doi:10.1021/es403910s
  • Jakubek T, Hudy C, Gryboś J, Manyar H, Kotarba A. 2019. Thermal transformation of birnessite (OL) towards highly active cryptomelane (OMS-2) catalyst for soot oxidation. Catal Lett. 149(8):2218–2225. doi:10.1007/s10562-019-02828-1
  • Jakubek T, Hudy C, Indyka P, Nowicka E, Golunski S, Kotarba A. 2019. Effect of noble metal addition to alkali-exchanged cryptomelane on the simultaneous soot and voc combustion activity. Catal Commun. 132:105807. doi:10.1016/j.catcom.2019.105807
  • Kaewbuddee C, Chirawatkul P, Kamonsuangkasem K, Chanlek N, Wantala K. 2021. Structural characterizations of copper incorporated manganese oxide OMS-2 material and its efficiencies on toluene oxidation. Chem Eng Commun. :1–17. doi:10.1080/00986445.2021.1872021
  • Kamal MS, Razzak SA, Hossain MM. 2016. Catalytic oxidation of volatile organic compounds (VOCs) – a review. Atmos Environ. 140:117–134. doi:10.1016/j.atmosenv.2016.05.031
  • Li Y, Fan Z, Shi J, Liu Z, Zhou J, Shangguan W. 2015. Modified manganese oxide octahedral molecular sieves M′-OMS-2 (M′ = Co,Ce,Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation. Catal Today. 256:178–185. doi:10.1016/j.cattod.2015.02.003
  • Li L, Jing F, Yan J, Jing J, Chu W. 2017. Highly effective self-propagating synthesis of CeO2-doped MnO2 catalysts for toluene catalytic combustion. Catal Today. 297:167–172. doi:10.1016/j.cattod.2017.04.053
  • Li X, Zou Q, Wei Y, Zhou X, Wang Z, Xu A, Ruan X. 2019. Graphite assisted room-temperature synthesis of structurally defected OMS-2 nanorods for peroxymonosulfate activation. Appl Surf Sci. 497:143770. doi:10.1016/j.apsusc.2019.143770
  • Liu Y, Hou J. 2019. Ce ion substitution position effect on catalytic activity of OMS-2 for benzene oxidation. Mater Res Bull. 118:110497. doi:10.1016/j.materresbull.2019.110497
  • Liu J, Ke L, Liu J, Sun L, Yuan X, Li Y, Xia D. 2019. Enhanced catalytic ozonation towards oxalic acid degradation over novel copper doped manganese oxide octahedral molecular sieves nanorods. J Hazard Mater. 371:42–52. doi:10.1016/j.jhazmat.2019.02.094
  • Ma J, Wang C, He H. 2017. Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Appl Catal B: Environ. 201:503–510. doi:10.1016/j.apcatb.2016.08.050
  • Millanar JM, Luna M. D d, Yodsa-Nga A, Wantala K. 2018. Toluene oxidation using K-OMS 2 synthesized via hydrothermal process by central composite design. Chiang Mai J Sci. 45(2):1030–1038. http://cmuir.cmu.ac.th/jspui/handle/6653943832/64088.
  • Ni C, Hou J, Li L, Li Y, Wang M, Yin H, Tan W. 2020. The remarkable effect of alkali earth metal ion on the catalytic activity of OMS-2 for benzene oxidation. Chemosphere. 250:126211. doi:10.1016/j.chemosphere.2020.126211
  • Pahalagedara L, Kriz DA, Wasalathanthri N, Weerakkody C, Meng Y, Dissanayake S, Pahalagedara M, Luo Z, Suib SL, Nandi P, et al. 2017. Benchmarking of manganese oxide materials with CO oxidation as catalysts for low temperature selective oxidation. Appl Catal B: Environ. 204:411–420. doi:10.1016/j.apcatb.2016.11.043
  • Rokicińska A, Majerska P, Drozdek M, Jarczewski S, Valentin L, Chen J, Slabon A, Dzwigaj S, Kuśtrowski P. 2021. Impact of mn addition on catalytic performance of Cu/SiBEA materials in total oxidation of aromatic volatile organic compounds. Appl Surf Sci. 546:149148. doi:10.1016/j.apsusc.2021.149148
  • Santos VP, Bastos SS, Pereira MF, Órfão JJ, Figueiredo JL. 2010. Stability of a cryptomelane catalyst in the oxidation of toluene. Catal Today. 154(3–4):308–311. doi:10.1016/j.cattod.2009.12.005
  • Santos VP, Carabineiro SA, Bakker JJ, Soares OS, Chen X, Pereira MF, Órfão JJ, Figueiredo JL, Gascon J, Kapteijn F. 2014. Stabilized gold on cerium-modified cryptomelane: highly active in low-temperature CO oxidation. J Catal. 309:58–65. doi:10.1016/j.jcat.2013.08.030
  • Soltanpour Z, Mohammadian Y, Fakhri Y. 2021. The concentration of benzene, toluene, ethylbenzene, and xylene in ambient air of the gas stations in iran: A systematic review and probabilistic health risk assessment. Toxicol Ind Health. 37(3):134–141. doi:10.1177/0748233720981218
  • Sultana S, Ye Z, Veerapandian SK, Löfberg A, Geyter ND, Morent R, Giraudon JM, Lamonier JF. 2018. Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute tce abatement. Catal Today. 307:20–28. doi:10.1016/j.cattod.2017.05.078
  • Sun H, Chen S, Wang P, Quan X. 2011. Catalytic oxidation of toluene over manganese oxide octahedral molecular sieves (OMS-2) synthesized by different methods. Chem Eng J. 178:191–196. doi:10.1016/j.cej.2011.10.047
  • Sun M, Yu L, Ye F, Diao G, Yu Q, Hao Z, Zheng Y, Yuan L. 2013. Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether. Chem Eng J. 220:320–327. doi:10.1016/j.cej.2013.01.061
  • Tao L, Bi X, Zhang L, Chen G, Zhao P, Yang JL, Meng X. 2020. Na-doped OMS-2-catalzyed highly selective aerobic oxidation of ethyl lactate to ethyl pyruvate under mild conditions. Appl Catal A- Gen. 605:117813. doi:10.1016/j.apcata.2020.117813
  • Tian H, He J, Zhang X, Zhou L, Wang D. 2011. Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation. Microporous Mesoporous Mater. 138(1–3):118–122. doi:10.1016/j.micromeso.2010.09.022
  • Valente JS, Frías D, Navarro P, Montes M, Delgado JJ, Fregoso-Israel E, Torres-García E. 2008. Manganese cryptomelane-type oxides: a thermo-kinetic and morphological study. Appl Surf Sci. 254(10):3006–3013. doi:10.1016/j.apsusc.2007.10.042
  • Wang L, Zhang C, He H, Liu F, Wang C. 2016. Effect of doping metals on OMS-2/γ-Al2O3 catalysts for plasma-catalytic removal of o-xylene. J Phys Chem C. 120(11):6136–6144. doi:10.1021/acs.jpcc.6b00870
  • Wantala K, Suwannaruang T, Palalerd J, Chirawatkul P, Chanlek N, Wannapaiboon S, Saiyasombat C, Khunphonoi R. 2021. Influence of in-situ and ex-situ Cu-Fe doping in K-OMS-2 catalysts on dye degradation via fenton-like reaction with focus on catalytic properties and performances. Surf Interfaces. 23:101030. doi:10.1016/j.surfin.2021.101030
  • Xie J, Chen L, Zhou WF, Au CT, Yin SF. 2016. Selective oxidation of p-chlorotoluene to p-chlorobenzaldehyde over metal-modified OMS-2 molecular sieves. J Mol Catal A Chem. 425:110–115. doi:10.1016/j.molcata.2016.09.038
  • Yang Y, Huang J, Zhang S, Wang S, Deng S, Wang B, Yu G. 2014. Catalytic removal of gaseous HCBZ on Cu doped OMS: effect of Cu location on catalytic performance. Appl Catal B: Environ. 150–151:167–178. doi:10.1016/j.apcatb.2013.11.041
  • Yang L, Ma J, Li X, He G, Zhang C, He H. 2020. Improving the catalytic performance of ozone decomposition over Pd-Ce-OMS-2 catalysts under harsh conditions. Catal Sci Technol. 10(22):7671–7680. doi:10.1039/D0CY01298J
  • Yang C, Miao G, Pi Y, Xia Q, Wu J, Li Z, Xiao J. 2019. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem Eng J. 370:1128–1153. doi:10.1016/j.cej.2019.03.232
  • Yodsa-Nga A, Millanar JM, Neramittagapong A, Khemthong P, Wantala K. 2015. Effect of manganese oxidative species in as-synthesized K-OMS 2 on the oxidation of benzene. Surf Coat Technol. 271:217–224. doi:10.1016/j.surfcoat.2014.12.025
  • Yu L, Diao G, Ye F, Sun M, Zhou J, Li Y, Liu Y. 2011. Promoting effect of ce in Ce/OMS-2 catalyst for catalytic combustion of dimethyl ether. Catal Lett. 141(1):111–119. doi:10.1007/s10562-010-0475-0
  • Yue L, Hu M, Tian M, Liao X, Xu Z, Shi L, He C. 2020. Insight into the role of ceria on OMS-2 and OL materials for catalytic degradation of toluene. Front Environ Chem. 0:12. doi:10.3389/FENVC.2020.599349.
  • Zhang J, Tse K, Wong M, Zhang Y, Zhu J. 2016. A brief review of co-doping. Front Phys. 11(6):1–21. doi:10.1007/S11467-016-0577-2.
  • Zhou L, Zhang B, Li Z, Zhang X, Liu R, Yun J. 2020. Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs. Mol Catal. 489:110920. doi:10.1016/j.mcat.2020.110920

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.