150
Views
0
CrossRef citations to date
0
Altmetric
ARTICLE

Deciphering the imperative role of ruthenium in enhancing the performance of Ni/Nd2O3.Gd2O3 in glycerol dry reforming

, , , , , , & ORCID Icon show all

References

  • Abbas M, Sikander U, Mehran MT, Kim SH. 2021. Exceptional stability of hydrotalcite derived spinel Mg(Ni)Al2O4 catalyst for dry reforming of methane. Catalysis Today. doi:10.1016/j.cattod.2021.08.029
  • Al-Fatesh AS, Ibrahim AA, Fakeeha AH, Singh SK, Labhsetwar NK, Shaikh H, Qasim SO. 2019. CO2 reforming of CH4: effect of Gd as promoter for Ni supported over MCM-41 as catalyst. Renew Energy. 140:658–667. doi:10.1016/j.renene.2019.03.082
  • Al-Musa A, Al-Saleh M, Ioakeimidis ZC, Ouzounidou M, Yentekakis IV, Konsolakis M, Marnellos GE. 2014. Hydrogen production by iso-octane steam reforming over Cu catalysts supported on rare earth oxides (REOs). Int J Hydrogen Energy. 39(3):1350–1363. doi:10.1016/j.ijhydene.2013.11.013
  • Anil C, Modak JM, Madras G. 2020. Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst. Mol Catal. 484(November 2019):110805. doi:10.1016/j.mcat.2020.110805
  • Azri N, Irmawati R, Nda-Umar UI, Saiman MI, Taufiq-Yap YH. 2021. Promotional effect of transition metals (Cu, Ni, Co, Fe, Zn)–supported on dolomite for hydrogenolysis of glycerol into 1,2-propanediol. Arabian J Chem. 14(4):103047. doi:10.1016/j.arabjc.2021.103047
  • Bac S,Say Z,Kocak Y,Ercan KE,Harfouche M,Ozensoy E,Avci AK. 2019. Exceptionally active and stable catalysts for CO2 reforming of glycerol to syngas. Appl. Catal., B. 256:117808 doi:10.1016/j.apcatb.2019.117808.
  • Ballesteros-Plata D, Infantes-Molina A, Rodríguez-Castellón E, Cauqui MA, Yeste MP. 2022. Improving noble metal catalytic activity in the dry reforming of methane by adding niobium. Fuel. 308(April 2021):121996. doi:10.1016/j.fuel.2021.121996
  • Charisiou ND, Siakavelas G, Tzounis L, Dou B, Sebastian V, Hinder SJ, Baker MA, Polychronopoulou K, Goula MA. 2020. Ni/Y2O3–ZrO2 catalyst for hydrogen production through the glycerol steam reforming reaction. Int J Hydrogen Energy. 45(17):10442–10460. doi:10.1016/j.ijhydene.2019.04.237
  • Chaudhary PK, Koshta N, Deo G. 2020. Effect of O2 and temperature on the catalytic performance of Ni/Al2O3 and Ni/MgAl2O4 for the dry reforming of methane (DRM). Int J Hydrogen Energy. 45(7):4490–4500. doi:10.1016/j.ijhydene.2019.12.053
  • Dahdah E, Estephane J, Gennequin C, Aboukaïs A, Abi-Aad E, Aouad S. 2020. Zirconia supported nickel catalysts for glycerol steam reforming: effect of zirconia structure on the catalytic performance. Int J Hydrogen Energy. 45(7):4457–4467. doi:10.1016/j.ijhydene.2019.12.019
  • Das S, Sengupta M, Bag A, Saini A, Muhler M, Bordoloi A. 2021. Gd-Ru nanoparticles supported on Zr0.5Ce0.5O2 nanorods for dry methane reforming. ACS Appl Nano Mater. 4(3):2547–2557. doi:10.1021/acsanm.0c03140
  • de Araújo Moreira TG, de Carvalho Filho JFS, Carvalho Y, de Almeida JMAR, Nothaft Romano P, Falabella Sousa-Aguiar E. 2021. Highly stable low noble metal content rhodium-based catalyst for the dry reforming of methane. Fuel. 287(August):119536. doi:10.1016/j.fuel.2020.119536
  • Dehghanpoor-Gharashah A, Rezaei M, Meshkani F. 2021. Preparation and improvement of the mesoporous nanostructured nickel catalysts supported on magnesium aluminate for syngas production by glycerol dry reforming. Int J Hydrogen Energy. 46(43):22454–22462. doi:10.1016/j.ijhydene.2021.04.072
  • Demsash HD, Kondamudi KVK, Upadhyayula S, Mohan R. 2018. Ruthenium doped nickel-alumina-ceria catalyst in glycerol steam reforming. Fuel Process Technol. 169(October 2017):150–156. doi:10.1016/j.fuproc.2017.09.017
  • Dobosz J, Cichy M, Zawadzki M, Borowiecki T. 2018. Glycerol steam reforming over calcium hydroxyapatite supported cobalt and cobalt-cerium catalysts. J Energy Chem. 27(2):404–412. doi:10.1016/j.jechem.2017.12.004
  • Erdogan B, Arbag H, Yasyerli N. 2018. SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane. Int J Hydrogen Energy. 43(3):1396–1405. doi:10.1016/j.ijhydene.2017.11.127
  • Fakeeha AH, Bagabas AA, Lanre MS, Osman AI, Kasim SO, Ibrahim AA, Arasheed R, Alkhalifa A, Elnour AY, Abasaeed AE, et al. 2020. Catalytic performance of metal oxides promoted nickel catalysts supported on mesoporous γ-Alumina in dry reforming of methane. Processes. 8(5):522. doi:10.3390/pr8050522
  • Habibi N, Wang Y, Arandiyan H, Rezaei M. 2016. Biogas reforming for hydrogen production: a new path to high-performance nickel catalysts supported on magnesium aluminate spinel. ChemCatChem. 8(23):3600–3610. doi:10.1002/cctc.201601084
  • Hossain MZ, Chowdhury MBI, Jhawar AK, Charpentier PA. 2017. Supercritical water gasification of glucose using bimetallic aerogel Ru-Ni-Al2O3 catalyst for H2 production. Biomass Bioenergy. 107:39–51. doi:10.1016/j.biombioe.2017.09.010
  • Ibrahim AA, Al-fatesh AS, Kumar NS, Abasaeed AE, Kasim SO, Fakeeha AH. 2020. Dry reforming of methane using Ce-modified Ni. Catalysts. 10(2):242. doi:10.3390/catal10020242
  • Khajenoori M, Rezaei M, Meshkani F. 2015. Dry reforming over CeO2-promoted Ni/MgO nano-catalyst: effect of Ni loading and CH4/CO2 molar ratio. J Ind Eng Chem. 21:717–722. doi:10.1016/j.jiec.2014.03.043
  • Khani Y,Shariatinia Z,Bahadoran F. 2016. High catalytic activity and stability of ZnLaAlO 4 supported Ni, Pt and Ru nanocatalysts applied in the dry, steam and combined dry-steam reforming of methane. Chemical Engineering Journal. 299:353–366. doi:10.1016/j.cej.2016.04.108.
  • Khor SC, Jusoh M, Zakaria ZY. 2022. Hydrogen production from steam and dry reforming of methane-ethane-glycerol: a thermodynamic comparative analysis. Chem Eng Res Des. 180:178–189. doi:10.1016/j.cherd.2022.02.015
  • Kunkes EL, Simonetti DA, Dumesic JA, Pyrz WD, Murillo LE, Chen JG, Buttrey DJ. 2008. The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum-rhenium catalysts. J Catal. 260(1):164–177. doi:10.1016/j.jcat.2008.09.027
  • Lara-García HA, Araiza DG, Méndez-Galván M, Tehuacanero-Cuapa S, Gómez-Cortés A, Díaz G. 2020. Dry reforming of methane over nickel supported on Nd-ceria: enhancement of the catalytic properties and coke resistance. RSC Adv. 10(55):33059–33070. 10.1039/d0ra05761d.
  • Lee HC, Siew KW, Gimbun J, Cheng CK. 2014. Synthesis and characterisation of cement clinker-supported nickel catalyst for glycerol dry reforming. Chem Eng J. 255:245–256. doi:10.1016/j.cej.2014.06.044
  • Li B, Yuan X, Li L, Li B, Wang X, Tomishige K. 2021. Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane. Int J Hydrogen Energy. 46(62):31608–31622. doi:10.1016/j.ijhydene.2021.07.056
  • Mahfouz R, Estephane J, Gennequin C, Tidahy L, Aouad S, Abi-Aad E. 2021. CO2 reforming of methane over Ni and/or Ru catalysts supported on mesoporous KIT-6: effect of promotion with Ce. J Environ Chem Eng. 9(1):104662. doi:10.1016/j.jece.2020.104662
  • Meloni E, Martino M, Palma V. 2020. A short review on Ni based catalysts and related engineering issues for methane steam reforming. Catalysts. 10(3):352. doi:10.3390/catal10030352
  • Mohd Arif NN, Abidin SZ, Osazuwa OU, Vo DVN, Azizan MT, Taufiq-Yap YH. 2019. Hydrogen production via CO2 dry reforming of glycerol over Re[sbnd]Ni/CaO catalysts. Int J Hydrogen Energy. 44(37):20857–20871. doi:10.1016/j.ijhydene.2018.06.084
  • Moogi S, Nakka L, Potharaju SSP, Ahmed A, Farooq A, Jung SC, Rhee GH, Park YK. 2021. Copper promoted CO/MgO: a stable and efficient catalyst for glycerol steam reforming. Int J Hydrogen Energy. 46(34):18073–18084. doi:10.1016/j.ijhydene.2020.08.190
  • Omodara L, Turpeinen EM, Pitkäaho S, Keiski RL. 2020. Substitution potential of rare earth catalysts in ethanol steam reforming. Sustain Mater Technol. 26:e00237. doi:10.1016/j.susmat.2020.e00237
  • Paviotti MA, Faroldi BM, Cornaglia LM. 2021. Ni-based catalyst over rice husk-derived silica for the CO2 methanation reaction: effect of Ru addition. J Environ Chem Eng. 9(3):105173. doi:10.1016/j.jece.2021.105173
  • Pradhan G, Sharma YC. 2021. A greener and cheaper approach towards synthesis of glycerol carbonate from bio waste glycerol using CaO–TiO2 nanocatalysts. J Cleaner Prod. 315(May):127860. doi:10.1016/j.jclepro.2021.127860
  • Reynoso AJ, Ayastuy JL, Iriarte-Velasco U, Gutiérrez-Ortiz MA. 2022. Aqueous-phase reforming of glycerol over Pt-Co catalyst: effect of process variables. J Environ Chem Eng. 10(3):107402. doi:10.1016/j.jece.2022.107402
  • Roslan NA, Zainal S, Uyi O, Yee S, Taufiq-yap YH. 2022. Enhanced syngas production from glycerol dry reforming over Ru promoted -Ni catalyst supported on extracted Al2O3. Fuel. 314(December 2021):123050. doi:10.1016/j.fuel.2021.123050
  • Saidi M, Moradi P. 2020. Conversion of biodiesel synthesis waste to hydrogen in membrane reactor: theoretical study of glycerol steam reforming. Int J Hydrogen Energy. 45(15):8715–8726. doi:10.1016/j.ijhydene.2020.01.064
  • Siang TJ, Jalil AA, Hamid MYS, Abdulrasheed AA, Abdullah TAT, Vo DVN. 2020. Role of oxygen vacancies in dendritic fibrous M/KCC-1 (M = Ru, Pd, Rh) catalysts for methane partial oxidation to H2-rich syngas production. Fuel. 278(June):118360. doi:10.1016/j.fuel.2020.118360
  • Siang TJ, Jalil AA, Abdulrahman A, Hambali HU. 2021. Enhanced carbon resistance and regenerability in methane partial oxidation to syngas using oxygen vacancy-rich fibrous Pd, Ru and Rh/KCC-1 catalysts. Environ Chem Lett. 19(3):2733–2742. doi:10.1007/s10311-021-01192-0
  • Siew KW, Lee HC, Gimbun J, Cheng CK. 2014. Production of CO-rich hydrogen gas from glycerol dry reforming over La-promoted Ni/Al2O3 catalyst. Int J Hydrogen Energy. 39(13):6927–6936. doi:10.1016/j.ijhydene.2014.02.059
  • Smoljan CS, Crawford JM, Carreon MA. 2020. Mesoporous microspherical NiO catalysts for the deoxygenation of oleic acid. Catal Commun. 143(March):106046. doi:10.1016/j.catcom.2020.106046
  • Suffredini DFP, Thyssen VV, de Almeida PMM, Gomes RS, Borges MC, Duarte de Farias AM, Assaf EM, Fraga MA, Brandão ST. 2017. Renewable hydrogen from glycerol reforming over nickel aluminate-based catalysts. Catal Today. 289:96–104. doi:10.1016/j.cattod.2016.07.027
  • Tavanarad M, Meshkani F, Rezaei M. 2018. Synthesis and application of noble metal nanocatalysts supported on ­ MgAl2O4 in glycerol dry reforming reaction. Catal Lett. 148(1):164–172. doi:10.1007/s10562-017-2221-3
  • Tavanarad M, Rezaei M, Meshkani F. 2021. Preparation and evaluation of Ni/γ-Al2O3 catalysts promoted by alkaline earth metals in glycerol reforming with carbon dioxide. Int J Hydrogen Energy. 46(49):24991–25003. doi:10.1016/j.ijhydene.2021.05.033
  • Torres S, Palacio R, López D. 2021. Support effect in CO3O4-based catalysts for selective partial oxidation of glycerol to lactic acid. Appl Catal, A. 621(Apri):118199. doi:10.1016/j.apcata.2021.118199
  • Wang N, Chu W, Zhang T, Zhao XS. 2012. Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. Int J Hydrogen Energy. 37(1):19–30. doi:10.1016/j.ijhydene.2011.03.138
  • Xin J, Cui H, Cheng Z, Zhou Z. 2018. Bimetallic Ni-Co/SBA-15 catalysts prepared by urea co-precipitation for dry reforming of methane. Appl Catal, A. 554(September 2017):95–104. doi:10.1016/j.apcata.2018.01.033
  • Xu X, Wei Z, Ji Q, Wang C, Gao G. 2019. Global renewable energy development: influencing factors, trend predictions and countermeasures. Resour Policy. 63(April):101470. doi:10.1016/j.resourpol.2019.101470
  • Yu J, Odriozola JA, Reina TR. 2019. Dry reforming of ethanol and glycerol: mini-review. Catalysts. 9(12):1015–1020. doi:10.3390/catal9121015
  • Zanoni A, Gardoni G, Sponchioni M, Moscatelli D. 2020. Valorisation of glycerol and CO2 to produce biodegradable polymer nanoparticles with a high percentage of bio-based components. J CO2 Util. 40(April):101192. doi:10.1016/j.jcou.2020.101192
  • Zhang G, Liu J, Xu Y, Sun Y. 2018. A review of CH4–CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017). Int J Hydrogen Energy. 43(32):15030–15054. doi:10.1016/j.ijhydene.2018.06.091
  • Zhou H,Zhang T,Sui Z,Zhu Y-A,Han C,Zhu K,Zhou X. 2018. A single source method to generate Ru-Ni-MgO catalysts for methane dry reforming and the kinetic effect of Ru on carbon deposition and gasification. Appl. Catal., B. 233:143–159. doi:10.1016/j.apcatb.2018.03.103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.