66
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Research progress on hazardous chromite ore processing residue treatment and utilization: a critical review

, , , , , , & show all

References

  • Ali S, Noureen S, Shakoor MB, Haroon MY, Rizwan M, Jilani A, Arif MS, Khalil U. 2020. Comparative evaluation of wheat straw and press mud biochars for Cr(VI) elimination from contaminated aqueous solution. Environmental Technology & Innovation. 19:1–12. doi:10.1016/j.eti.2020.101017.
  • Azimi A, Azari A, Rezakazemi M, Ansarpour M. 2017. Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev. 4(1):37–59. doi:10.1002/cben.201600010.
  • Bai Y, Yin J, Yuan Y, Guo Y, Song D. 2015. An innovative system for promoting cleaner production: mandatory cleaner production audits in China. J Cleaner Prod. 108:883–890. doi:10.1016/j.jclepro.2015.07.107.
  • Banerjee S, Misra A, Chaudhury S, Dam B. 2019. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. J Hazard Mater. 367:215–223. doi:10.1016/j.jhazmat.2018.12.038.
  • Bayer Öztürk Z, Dal S. 2022. Characterization of industrial ceramic glazes containing chromite processing waste: experimental factorial design effects on color parameters. Mater Chem Phys. 282:125928. doi:10.1016/j.matchemphys.2022.125928.
  • Brose DA, James BR. 2013. Hexavalent chromium reduction by tartaric acid and isopropyl alcohol in Mid-Atlantic soils and the role of Mn(III,IV)(hydr)oxides. Environ Sci Technol. 47(22):12985–12991. doi:10.1021/es401903s.
  • Chai L-y, Wang Y-y, Yang Z-h, Wang Q-w, Wang H-y 2010. Detoxification of chromium-containing slag by Achromobacter sp. CH-1 and selective recovery of chromium. Trans Nonferrous Met Soc China. 20(8):1500–1504. doi:10.1016/S1003-6326(09)60328-9.
  • Chen T, Zhang Y, Wang H, Lu W, Zhou Z, Zhang Y, Ren L. 2014. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour Technol. 164:47–54. doi:10.1016/j.biortech.2014.04.048.
  • Cheng S, Shui Z, Yu R, Zhang X, Zhu S. 2018. Durability and environment evaluation of an eco-friendly cement-based material incorporating recycled chromium containing slag. J Cleaner Prod. 185:23–31. doi:10.1016/j.jclepro.2018.03.048.
  • Chrysochoou M, Dermatas D. 2007. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue. J Hazard Mater. 141(2):370–377. doi:10.1016/j.jhazmat.2006.05.081.
  • Chrysochoou M, Johnston CP, Dahal G. 2012. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron. J Hazard Mater. 201-202:33–42. doi:10.1016/j.jhazmat.2011.11.003.
  • Dai L, Ding J, Liu Y, Wu X, Chen L, Chen R, Van der Bruggen B. 2021. Recovery of Cr(VI) and removal of cationic metals from chromium slag using a modified bipolar membrane system. J Membr Sci. 639:119772. doi:10.1016/j.memsci.2021.119772.
  • Du J, Lu J, Wu Q, Jing C. 2012. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. J Hazard Mater. 215-216:152–158. doi:10.1016/j.jhazmat.2012.02.049.
  • Elahi A, Rehman A. 2019. Comparative behavior of two gram positive Cr(6+) resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress. Biotechnol Rep (Amst). 21:e00307. doi:10.1016/j.btre.2019.e00307.
  • Ge X, Zhou M, Wang H, Liu Z, Wu H, Chen X. 2018. Preparation and characterization of ceramic foams from chromium slag and coal bottom ash. Ceram Int. 44(10):11888–11891. doi:10.1016/j.ceramint.2018.03.122.
  • Gencel O, Munir MJ, Kazmi SMS, Sutcu M, Erdogmus E, Velasco PM, Quesada DE. 2021. Recycling industrial slags in production of fired clay bricks for sustainable manufacturing. Ceram Int. 47(21):30425–30438. doi:10.1016/j.ceramint.2021.07.222.
  • Gencel O, Sutcu M, Erdogmus E, Koc V, Cay VV, Gok MS. 2013. Properties of bricks with waste ferrochromium slag and zeolite. J Cleaner Prod. 59:111–119. doi:10.1016/j.jclepro.2013.06.055.
  • Gnip I, Vaitkus S, Vėjelis S. 2013. An estimated prediction of the deformability of mineral wool (MW) slabs under long-term compressive stress. Constr Build Mater. 38:675–680. doi:10.1016/j.conbuildmat.2012.07.043.
  • Gupta VK, Ali I, Saleh TA, Siddiqui MN, Agarwal S. 2013. Chromium removal from water by activated carbon developed from waste rubber tires. Environ Sci Pollut Res Int. 20(3):1261–1268. doi:10.1007/s11356-012-0950-9.
  • He L, Li B, Lin Z, Ning P, Shen Z. 2019. Mechanism of dry detoxification of chromium slag by carbon monoxide. Environ Chem Lett. 17(3):1375–1381. doi:10.1007/s10311-019-00868-y.
  • Hu S, Wang D, Li X, Zhao W, Qu T, Wang Y. 2021. Enrichment characteristics of Cr in chromium slag after pre-reduction and melting/magnetic separation treatment. Materials (Basel). 14(17):4937. doi:10.3390/ma14174937.
  • Huang T, Cao ZX, Fan XC, Jin JX, Yang CH, Liu LF, Zhang SW. 2021. Microwave irradiation coupled with zero-valent iron that enhances the composite geopolymerization of chromite ore processing residue and its mechanisms. Environ Sci Pollut Res Int. 28(26):34824–34837. doi:10.1007/s11356-021-13072-9.
  • Huang SW, Chiang PN, Liu JC, Hung JT, Kuan WH, Tzou YM, Wang SL, Huang JH, Chen CC, Wang MK, et al. 2012. Chromate reduction on humic acid derived from a peat soil–exploration of the activated sites on HAs for chromate removal. Chemosphere. 87(6):587–594. doi:10.1016/j.chemosphere.2012.01.010.
  • Huang X, Huang T, Li S, Muhammad F, Xu G, Zhao Z, Yu L, Yan Y, Li D, Jiao B. 2016. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceram Int. 42(8):9538–9549. doi:10.1016/j.ceramint.2016.03.033.
  • Huang T, Liu L, Zhou L, Zhang S. 2018. Electrokinetic removal of chromium from chromite ore-processing residue using graphite particle-supported nanoscale zero-valent iron as the three-dimensional electrode. Chem Eng J. 350:1022–1034. doi:10.1016/j.cej.2018.06.048.
  • Huang X, Muhammad F, Yu L, Jiao B, Shiau Y, Li D. 2018. Reduction/immobilization of chromite ore processing residue using composite materials based geopolymer coupled with zero-valent iron. Ceram Int. 44(3):3454–3463. doi:10.1016/j.ceramint.2017.11.148.
  • Huang T, Pan L, Dong J, Zhou L, Tao H, Zhang S-w, Li A. 2022. A comprehensive investigation of zeolite-rich tuff functionalized with 3-mercaptopropionic acid intercalated green rust for the efficient removal of HgII and CrVI in a binary system. J Environ Manage. 324:116344. doi:10.1016/j.jenvman.2022.116344.
  • Huang T, Song D, Chen X, Cao J, Jin J-X, Liu W, Zhang S-W, Liu L-F, Yang C-H, Zhou L, et al. 2021. A green rust-coated expanded perlite particle electrode-based adsorption coupling with the three-dimensional electrokinetics that enhances hexavalent chromium removal. Ecotoxicol Environ Saf. 213:112003. doi:10.1016/j.ecoenv.2021.112003.
  • Huang T, Song D, Fang Q, Yang C, Wu D, Li S, Luo Y, Yan Y, Hu Z. 2023. Synthesis of nonthermal plasma-irradiated polyvalent manganese (hydro)oxide functionalized nanosilica for intensifying geopolymerized solidification/stabilization of thallium-contaminated soil and mechanism exploration. Chem Eng J. 469:143751. doi:10.1016/j.cej.2023.143751.
  • Huang T, Zhang S-W, Zhou L, Li A, Tao H. 2022. Self-cementation of the alkali-activated volcanic tuff coupling with thiol-functionalized expanded perlite that enhances the solidification and stabilization of the mercury-contaminated soil. Chem Eng J. 428:131059. doi:10.1016/j.cej.2021.131059.
  • Huang T, Zhou L, Cao Z, Zhang S, Liu L. 2021. A microwave irradiation-persulfate-formate system for achieving the detoxification and alkali-activated composite geopolymerization of the chromate-contaminated soil. Ecotoxicol Environ Saf. 217:112233. doi:10.1016/j.ecoenv.2021.112233.
  • Huang X, Zhuang R, Muhammad F, Yu L, Shiau Y, Li D. 2017. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Chemosphere. 168:300–308. doi:10.1016/j.chemosphere.2016.10.067.
  • Jagupilla SC, Wazne M, Moon DH. 2015. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue. Chemosphere. 136:95–101. doi:10.1016/j.chemosphere.2015.04.050.
  • Jobby R, Jha P, Yadav AK, Desai N. 2018. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere. 207:255–266. doi:10.1016/j.chemosphere.2018.05.050.
  • Kameswari KSB, Pedaballe V, Narasimman LM, Kalyanaraman C. 2015. Remediation of chromite ore processing residue using solidification and stabilization process. Env Prog Sustain Energy. 34(3):674–680. doi:10.1002/ep.12047.
  • Kanchinadham SB, Narasimman LM, Pedaballe V, Kalyanaraman C. 2015. Diffusion and leachability index studies on stabilization of chromium contaminated soil using fly ash. J Hazard Mater. 297:52–58. doi:10.1016/j.jhazmat.2015.04.045.
  • Lan Y, Zhang L, Li X, Liu W, Su X, Lin Z. 2022. Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe(2+)(Cr(3+)(X), Fe(3+)(2-x))O(4) and its magnetic separation. Sci Total Environ. 813:152637. doi:10.1016/j.scitotenv.2021.152637.
  • Lehoux AP, Sanchez-Hachair A, Lefebvre G, Carlier G, Hébrard C, Lima AT, Hofmann A. 2017. Chromium (VI) retrieval from chromium ore processing residues by electrokinetic treatment. Water Air Soil Pollut. 228(9):1–13 doi:10.1007/s11270-017-3562-7.
  • Lei D, Gou C, Wang C, Xue J, Zhang Z, Liu W, Lin Z, Zhang J. 2022. Visible light accelerates Cr(III) release and oxidation in Cr-Fe chromite residues: an overlooked risk of Cr(VI) reoccurrence. Environ Sci Technol. 56(24):17674–17683. doi:10.1021/acs.est.2c05775.
  • Liang J, Huang X, Yan J, Li Y, Zhao Z, Liu Y, Ye J, Wei Y. 2021. A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater. Sci Total Environ. 774:145762. doi:10.1016/j.scitotenv.2021.145762.
  • Liao C-Z, Tang Y, Lee P-H, Liu C, Shih K, Li F. 2017. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic. J Hazard Mater. 321:449–455. doi:10.1016/j.jhazmat.2016.09.035.
  • Li J, Chen Z, Shen J, Wang B, Fan L. 2015. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide. Chemosphere. 134:159–165. doi:10.1016/j.chemosphere.2015.04.021.
  • Li B, Chen C, Zhang Y, Yuan L, Deng H, Qian W. 2021. Preparation of glass-ceramics from chromite-containing tailings solidified with Red Mud. Surf Interfaces. 25:101210. doi:10.1016/j.surfin.2021.101210.
  • Li Y, Cundy AB, Feng J, Fu H, Wang X, Liu Y. 2017. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism. J Environ Manage. 192:100–106. doi:10.1016/j.jenvman.2017.01.031.
  • Li MH, Gao XY, Li C, Yang CL, Fu CA, Liu J, Wang R, Chen LX, Lin JQ, Liu XM, et al. 2020. Isolation and identification of chromium reducing Bacillus cereus species from chromium-contaminated soil for the biological detoxification of chromium. Int J Environ Res Public Health. 17(6):1–13. doi:10.3390/ijerph17062118.
  • Li Y, Liang J, Yang Z, Wang H, Liu Y. 2019. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS(2). Sci Total Environ. 658:315–323. doi:10.1016/j.scitotenv.2018.12.042.
  • Liu Y, Ding J, Zhu H, Wu X, Dai L, Chen R, Van der Bruggen B. 2022. Recovery of trivalent and hexavalent chromium from chromium slag using a bipolar membrane system combined with oxidation. J Colloid Interface Sci. 619:280–288. doi:10.1016/j.jcis.2022.03.140.
  • Liu Y, Ke X, Wu X, Ke C, Chen R, Chen X, Zheng X, Jin Y, Van der Bruggen B. 2020. Simultaneous removal of trivalent chromium and hexavalent chromium from soil using a modified bipolar membrane electrodialysis system. Environ Sci Technol. 54(20):13304–13313. doi:10.1021/acs.est.0c04105.
  • Liu W, Li J, Zheng J, Song Y, Shi Z, Lin Z, Chai L. 2020. Different pathways for Cr(III) oxidation: implications for Cr(VI) reoccurrence in reduced chromite ore processing residue. Environ Sci Technol. 54(19):11971–11979. doi:10.1021/acs.est.0c01855.
  • Liu W, Song Y, Li J, Ling L, Tian C, Liu X, Lin Z. 2020. Efficient extraction of slowly-released Cr(vi) from nano-sized ion channels in Cr(vi)–ettringite from reduced chromite ore processing residue. Environ Sci: nano. 7(4):1082–1091. doi:10.1039/D0EN00074D.
  • Liu Z, Zheng J, Liu W, Liu X, Chen Y, Ren X, Ning P, Lin Z. 2020. Identification of the key host phases of Cr in fresh chromite ore processing residue (COPR). Sci Total Environ. 703:135075. doi:10.1016/j.scitotenv.2019.135075.
  • Liu W, Zheng J, Ou X, Liu X, Song Y, Tian C, Rong W, Shi Z, Dang Z, Lin Z. 2018. Effective extraction of Cr(VI) from hazardous gypsum sludge via controlling the phase transformation and chromium species. Environ Sci Technol. 52(22):13336–13342. doi:10.1021/acs.est.8b02213.
  • Long H-m, Meng Q-m, Wang P, Chun T-j, Yao Y-l 2015. Preparation of chromium-iron metal powder from chromium slag by reduction roasting and magnetic separation. J Iron Steel Res Int. 22(9):771–776. doi:10.1016/S1006-706X(15)30070-4.
  • Lu C, Xi W, Quan X, Zhang Z. 2018. Remediation of lime-free roasting chromite ore processing residue (COPR) by water leaching and pyrolysis process. Energy Sources Part A. 40(11):1417–1425. doi:10.1080/15567036.2018.1477871.
  • Luo Z, Zhi T, Liu L, Mi J, Zhang M, Tian C, Si Z, Liu X, Mu Y. 2022. Solidification/stabilization of chromium slag in red mud-based geopolymer. Constr Build Mater. 316:125813. doi:10.1016/j.conbuildmat.2021.125813.
  • Mao L, Su P, Huang B, Zhang W. 2017. Detoxification of solid waste containing Cr(VI) with phosphate by thermal treatment. Chem. Eng. J. 314:114–122. doi:10.1016/j.cej.2016.12.130.
  • Meegoda JN, Kamolpornwijit W. 2011. Chromium steel from chromite ore processing residue—a valuable construction material from a waste. Front Environ Sci Eng China. 5(2):159–166. doi:10.1007/s11783-011-0325-3.
  • Mo X, Zhou J, Lin L, Zhong Z, Yang S, Liu X, Shi Z, Zhao D, Lin Z. 2020. Extraction of Cr(VI) from chromite ore processing residue via hydrothermal-assisted phase transformation. Chin Chem Lett. 31(7):1956–1960. doi:10.1016/j.cclet.2019.11.040.
  • Mohan R, Deevakar L, Sivakumar V. 2021. Towards holistic technology solution to chromite ore processing residue (COPR) challenge; global issue: review and analysis. Int J Environ Sci Technol. 19(1):665–676. doi:10.1007/s13762-020-03097-x.
  • Muhammad F, Xia M, Li S, Yu X, Mao Y, Muhammad F, Huang X, Jiao B, Yu L, Li D. 2019. The reduction of chromite ore processing residues by green tea synthesized nano zerovalent iron and its solidification/stabilization in composite geopolymer. J Cleaner Prod. 234:381–391. doi:10.1016/j.jclepro.2019.06.004.
  • Panda C, Biswal SS, Dash P, Jena T, Panda KC, Sahu D. 2022. Study of chromium immobilization behavior in unbound and concrete bound ferrochromium slag. J Mater Cycles Waste Manag. 24(2):528–539. doi:10.1007/s10163-021-01337-x.
  • Peng H, Guo J. 2020. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environ Chem Lett. 18(6):2055–2068. doi:10.1007/s10311-020-01058-x.
  • Peng H, Leng Y, Guo J. 2019. Electrochemical removal of chromium (VI) from wastewater. Appl Sci. 9(6):1156. doi:10.3390/app9061156.
  • Pushkar B, Sevak P, Parab S, Nilkanth N. 2021. Chromium pollution and its bioremediation mechanisms in bacteria: a review. J Environ Manage. 287:112279. doi:10.1016/j.jenvman.2021.112279.
  • Qi Q, Li L, Wei L, Hu B, Liu Z, Liu X. 2021. Study on leaching kinetics of hexavalent chromium from aged calcium-free chromium slag. MGC. 20(3):317–329. doi:10.3233/MGC-210045.
  • Qiu B, Guo J, Zhang X, Sun D, Gu H, Wang Q, Wang H, Wang X, Zhang X, Weeks BL, et al. 2014. Polyethylenimine facilitated ethyl cellulose for hexavalent chromium removal with a wide pH range. ACS Appl Mater Interfaces. 6(22):19816–19824. doi:10.1021/am505170j.
  • Salihpasaoglu F, Sengul O. 2020. Use of waste ferrochromium slag as aggregate in concrete. J Mater Cycles Waste Manag. 22(6):2048–2058. doi:10.1007/s10163-020-01091-6.
  • Shang H, Zhu X, Shen M, Luo J, Zhou S, Li L, Shi Q, Zhou D, Zhang S, Chen J, et al. 2019. Decarbonylation reaction of saturated and oxidized tar from pyrolysis of low aromaticity biomass boost reduction of hexavalent chromium. Chem Eng J. 360:1042–1050. doi:10.1016/j.cej.2018.10.168.
  • Shi Y-m, Du X-h, Meng Q-j, Song S-w, Sui Z-t. 2007. Reaction process of chromium slag reduced by industrial waste in solid phase. J Iron Steel Res Int. 14(1):12–15. doi:10.1016/S1006-706X(07)60003-X.
  • Singh E, Kumar A, Mishra R, You S, Singh L, Kumar S, Kumar R. 2021. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresour Technol. 320(Pt A):124278. doi:10.1016/j.biortech.2020.124278.
  • Sun Y, Du Y, Lan J, Zhan W, Zhang TC. 2021. A new method (ball milling and sodium sulfide) for mechanochemical treatment of soda ash chromite ore processing residue. J Hazard Mater. 415:125601. doi:10.1016/j.jhazmat.2021.125601.
  • Sun Q, Liu F, Yuan Y, Liu W, Zhang W, Zhang J, Lin Z. 2020. Cellulose mediated reduction and immobilization of Cr(VI) in chromite ore processing residue. J Hazard Mater. 394:122538. doi:10.1016/j.jhazmat.2020.122538.
  • Suzuki T, Kawai K, Moribe M, Niinae M. 2014. Recovery of Cr as Cr(III) from Cr(VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier. J Hazard Mater. 278:297–303. doi:10.1016/j.jhazmat.2014.05.086.
  • Tang Y, Michel FM, Zhang L, Harrington R, Parise JB, Reeder RJ. 2010. Structural properties of the Cr(III)−Fe(III) (Oxy)hydroxide compositional series: insights for a nanomaterial “solid solution”. Chem Mater. 22(12):3589–3598. doi:10.1021/cm1000472.
  • Tinjum JM, Benson CH, Edil TB. 2008. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment. Sci Total Environ. 391(1):13–25. doi:10.1016/j.scitotenv.2007.10.041.
  • Tu Y, Zhang Y, Su Z, Jiang T. 2023. Collaborative resource utilization of hazardous chromium ore processing residue (COPR) and C-bearing dust during limonitic laterite sintering process. J Cleaner Prod. 386:135821. doi:10.1016/j.jclepro.2022.135821.
  • Wang TG, Li JS, Qin LL. 2013. Remediation of chromite ore processing residues with bacteria, biomass and ferrous sulfate. AMM. 295-298:1776–1779. doi:10.4028/www.scientific.net/AMM.295-298.1776.
  • Wang J, Mao M, Atif S, Chen Y. 2020. Adsorption behavior and mechanism of aqueous Cr(III) and Cr(III)-EDTA chelates on DTPA-chitosan modified Fe3O4@SiO2. React Funct Polym. 156:104720. doi:10.1016/j.reactfunctpolym.2020.104720.
  • Wang L, Sun Y, Du Y, Tian H, Zhan W, Zhang TC. 2022. Treatment of soda ash chromite ore processing residue by Waste-Molasses-Based Ball Milling: a new strategy for disposal of waste with waste. J Cleaner Prod. 374:133981. doi:10.1016/j.jclepro.2022.133981.
  • Wang Y, Yang Z, Peng B, Chai L, Wu B, Wu R. 2013. Biotreatment of chromite ore processing residue by Pannonibacter phragmitetus BB. Environ Sci Pollut Res Int. 20(8):5593–5602. doi:10.1007/s11356-013-1526-z.
  • Wang X, Zhang J, Wang L, Chen J, Hou H, Yang J, Lu X. 2017. Long-term stability of FeSO(4) and H(2)SO(4) treated chromite ore processing residue (COPR): importance of H(+) and SO(4)(2). J Hazard Mater. 321:720–727. doi:10.1016/j.jhazmat.2016.09.048.
  • Wang X, Zhao P, Chen J, Zhao H, He K. 2018. Corrosion resistance of Al–Cr-slag containing chromium–corundum refractories to slags with different basicity. Ceram Int. 44(11):12162–12168. doi:10.1016/j.ceramint.2018.03.266.
  • Watts MP, Coker VS, Parry SA, Thomas RA, Kalin R, Lloyd JR. 2015. Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst: impact of electron donor and aqueous geochemistry. Appl Catal B. 170-171:162–172. doi:10.1016/j.apcatb.2015.01.017.
  • Watts MP, Khijniak TV, Boothman C, Lloyd JR. 2015. Treatment of alkaline Cr(VI)-contaminated leachate with an alkaliphilic metal-reducing bacterium. Appl Environ Microbiol. 81(16):5511–5518. doi:10.1128/AEM.00853-15.
  • Whittleston RA, Stewart DI, Mortimer RJ, Tilt ZC, Brown AP, Geraki K, Burke IT. 2011. Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue. J Hazard Mater. 194:15–23. doi:10.1016/j.jhazmat.2011.07.067.
  • Wu J, Li C, Yang F. 2015. The disposition of chromite ore processing residue (COPR) incorporating industrial symbiosis. J Cleaner Prod. 95:156–162. doi:10.1016/j.jclepro.2015.02.041.
  • Wu C, Zhang H, He P, Shao L. 2010. Thermal stabilization of chromium slag by sewage sludge: effects of sludge quantity and temperature. J Environ Sci (China). 22(7):1110–1115. doi:10.1016/s1001-0742(09)60225-4.
  • Xia S, Song Z, Jeyakumar P, Bolan N, Wang H. 2020. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environ Geochem Health. 42(6):1543–1567. doi:10.1007/s10653-019-00445-w.
  • Xu W, Li X, Zhou Q, Peng Z, Liu G, Qi T. 2011. Remediation of chromite ore processing residue by hydrothermal process with starch. Process Saf Environ Prot. 89(3):179–185. doi:10.1016/j.psep.2010.11.002.
  • Xu J, Yang Y. 2014. Detoxification of chromium slag and contaminated soil. IJEWM. 13(1):67–74. doi:10.1504/IJEWM.2014.058794.
  • Yan C, Cheng Z, Tian Y, Qiu F, Chang H, Li S, Cai Y, Quan X. 2021. Adsorption of Ni(II) on detoxified chromite ore processing residue using citrus peel as reductive mediator: adsorbent preparation, kinetics, isotherm, and thermodynamics analysis. J Cleaner Prod. 315:128209. doi:10.1016/j.jclepro.2021.128209.
  • Yang Z, Zhang X, Jiang Z, Li Q, Huang P, Zheng C, Liao Q, Yang W. 2021. Reductive materials for remediation of hexavalent chromium contaminated soil - a review. Sci Total Environ. 773:145654. doi:10.1016/j.scitotenv.2021.145654.
  • Yan X, Wang J, Zhang M, Zhu X, Liu X. 2021. Advances in microbial remediation of the re-dissolved chromium contaminated sites. Sheng Wu Gong Cheng Xue Bao. 37(10):3591–3603.
  • Yu S, Du J, Luo T, Huang Y, Jing C. 2012. Evaluation of chromium bioaccessibility in chromite ore processing residue using in vitro gastrointestinal method. J Hazard Mater. 209-210:250–255. doi:10.1016/j.jhazmat.2012.01.009.
  • Yu L, Fang L, Zhang P, Zhao S, Jiao B, Li D. 2021. The utilization of alkali-activated lead-zinc smelting slag for chromite ore processing residue solidification/stabilization. Int J Environ Res Public Health. 18(19):1–15.
  • Yu Q, Li H, Zheng Y, Jiao B, Li D. 2022. Promoted electrokinetic treatment of Cr from chromite ore processing residue with rhamnolipid: focusing on the reactions on electrolyte-residue interfaces. J Environ Chem Eng. 10(1):106954. doi:10.1016/j.jece.2021.106954.
  • Yu Q, Yan Y, Lin H, Li H, Zheng Y, Jiao B, Yu L, Li D. 2020. Biosurfactants enhanced electrokinetic treatment of Cr from chromite ore processing residue based on chemical fractions. J Water Process Eng. 36:101252. doi:10.1016/j.jwpe.2020.101252.
  • Zhang X, Li G, Wu J, Xiong N, Quan X. 2020. Leaching of valuable elements from the waste chromite ore processing residue: a kinetic analysis. ACS Omega. 5(31):19633–19638. doi:10.1021/acsomega.0c02194.
  • Zhang J, Xie W, Chu S, Liu Z, Wu Z, Lan Y, Galvita VV, Zhang L, Su X. 2022. Sufficient extraction of Cr from chromium ore processing residue (COPR) by selective Mg removal. J Hazard Mater. 440:129754. doi:10.1016/j.jhazmat.2022.129754.
  • Zhang W, Zhang P, Liu F, Liu W, Zhang J, Lin Z. 2019. Simultaneous oxidation of Cr(III) and extraction of Cr(VI) from chromite ore processing residue by silicate-assisted hydrothermal treatment. Chem Eng J. 371:565–574. doi:10.1016/j.cej.2019.04.082.
  • Zhang DL, Zhang MY, Zhang CH, Sun YJ, Sun X, Yuan XZ. 2016. Pyrolysis treatment of chromite ore processing residue by biomass: cellulose pyrolysis and Cr(VI) reduction behavior. Environ Sci Technol. 50(6):3111–3118. doi:10.1021/acs.est.5b05707.
  • Zhang D, Zhang X, Zhang Z, Zhang X, Qiu F, Liu Z, Li W. 2022. Treatment of methylene blue wastewater with nano-PbCrO4 photocatalyst prepared from chromite ore processing residue. J Cleaner Prod. 379:134352. doi:10.1016/j.jclepro.2022.134352.
  • Zhang Y, Zheng S-l, Du H, Xu H-b, Zhang Y. 2010. Effect of mechanical activation on alkali leaching of chromite ore. Trans Nonferrous Met Soc China. 20(5):888–891. doi:10.1016/S1003-6326(09)60231-4.
  • Zhang W, Zhou Y, Hu C, Qu J. 2021. Electricity generation from salinity gradient to remove chromium using reverse electrodialysis coupled with electrocoagulation. Electrochim Acta. 379:138153. doi:10.1016/j.electacta.2021.138153.
  • Zhao Y, Kang D, Chen Z, Zhan J, Wu X. 2018. Removal of chromium using electrochemical approaches: a review. Int J Electrochem Sci. 13(2):1250–1259. doi:10.20964/2018.02.46.
  • Zhao N, Yin Z, Liu F, Zhang M, Lv Y, Hao Z, Pan G, Zhang J. 2018. Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars. Bioresour Technol. 260:294–301. doi:10.1016/j.biortech.2018.03.116.
  • Zhao G, Zhang L, Cang D. 2018. Pilot trial of detoxification of chromium slag in cyclone furnace and production of slag wool fibres. J Hazard Mater. 358:122–128. doi:10.1016/j.jhazmat.2018.06.061.
  • Zhao G, Zhang L, Cang D. 2019. Fundamental and industrial investigation on preparation of high acidity coefficient steel slag derived slag wool. J Ceram Soc Japan. 127(3):180–185. doi:10.2109/jcersj2.18211.
  • Zhao D, Zhang Z, Tang X, Liu L, Wang X. 2014. Preparation of slag wool by integrated waste-heat recovery and resource recycling of molten blast furnace slags: from fundamental to industrial application. Energies. 7(5):3121–3135. doi:10.3390/en7053121.
  • Zheng J, Li J, Ling L, Liu X, Kong S, Liao H, Liu W, Ning P, Lin Z. 2020. Crystal regulation of gypsum via hydrothermal treatment with hydrogen ion for Cr(VI) extraction. J Hazard Mater. 390:120614. doi:10.1016/j.jhazmat.2019.05.007.
  • Zhou J, Liu X, Zheng J, Li L, Liu W, Lin L, Lin Z. 2021. Simultaneous separation and immobilization of Cr(VI) from layered double hydroxide via reconstruction of the key phases. J Hazard Mater. 416:125807. doi:10.1016/j.jhazmat.2021.125807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.