68
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Copper corrosion inhibition in acidic aqueous media through tolyltriazole application: performance analysis

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdallah M, Al-Gorair AS, Fawzy A, Hawsawi H, Abdel Hameed RS. 2022. Enhancement of adsorption and anticorrosion performance of two polymeric compounds for the corrosion of SABIC carbon steel in hydrochloric acid. J Adhes Sci Technol. 36(1):35–53. doi:10.1080/01694243.2021.1907041.
  • Abdel Hameed R, Faride M, Othman M, Huwaimel B, Al-Mhyawi S, Shamroukh A, Alshammary F, Aljuhani E, Abdallah M. 2022. Green synthesis of zinc sulfide nanoparticles-organic heterocyclic polyol system as eco-friendly anti corrosion and anti-bacterial corrosion inhibitor for steel in acidic environment. GCLR. 15(3):847–862. doi:10.1080/17518253.2022.2141585.
  • Abdel Hameed RS. 2019. Schiff bases as corrosion inhibitor for aluminum alloy in hydrochloric acid medium. Tenside Surf Det. 56(3):209–215. doi:10.3139/113.110622.
  • Albini M, Letardi P, Mathys L, Brambilla L, Schröter J, Junier P, Joseph E. 2018. Comparison of a bio-based corrosion inhibitor versus benzotriazole on corroded copper surfaces. Corros Sci. 143:84–92. doi:10.1016/j.corsci.2018.08.020.
  • Alkharafi FM, El-Shamy AM, Ateya BG. 2009. Comparative effects of tolyltriazole and benzotriazole against sulfide attack on copper. Int J Electrochem Sci. 4(9):1351–1364. doi:10.1016/S1452-3981(23)15228-X.
  • Amini M, Toorani M, Rouhaghdam AS. 2020. Corrosion of copper in 0.1 M hydrochloric acid solution with benzotriazole as corrosion inhibitor. Prot Met Phys Chem Surf. 56(4):803–815. doi:10.1134/S2070205120040048.
  • Anastopoulos I, Kyzas GZ. 2016. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J Mol Liq. 218:174–185. doi:10.1016/j.molliq.2016.02.059.
  • Antonijevic MM, Milic SM, Dimitrijevic MD, Petrovic MB, Radovanovic MB, Stamenkovic AT. 2009. The influence of pH and chlorides on electrochemical behavior of copper in the presence of benzotriazole. Int J Electrochem Sci. 4(7):962–979. doi:10.1016/S1452-3981(23)15199-6.
  • Arancibia A, Henriquez-Roman J, Páez MA, Padilla-Campos L, Zagal JH, Costamagna J, Cárdenas-Jirón G. 2006. Influence of 5-chloro and 5-methyl benzotriazole on the corrosion of copper in acid solution: an experimental and a theoretical approach. J Solid State Electrochem. 10(11):894–904. doi:10.1007/s10008-005-0014-x.
  • Auepattana-Aumrung K, Crespy D. 2023. Self-healing and anticorrosion coatings based on responsive polymers with metal coordination bonds. Chem Eng J. 452:139055. doi:10.1016/j.cej.2022.139055.
  • Babić R, Metikoš-Huković M. 2000. Spectroelectrochemical studies of protective surface films against copper corrosion. Thin Solid Films. 359(1):88–94. doi:10.1016/S0040-6090(99)00718-X.
  • Balaskas AC, Curioni M, Thompson GE. 2015. Effectiveness of 2-mercaptobenzothiazole, 8-hydroxyquinoline and benzotriazole as corrosion inhibitors on AA 2024-T3 assessed by electrochemical methods. Surface & Interface Analysis. 47(11):1029–1039. doi:10.1002/sia.5810.
  • Cardoso SP, Reis FA, Massapust FC, Costa JF, Tebaldi LS, Araújo LFL, Silva MVA, Oliveira TS, Gomes JACP, Hollauer E. 2005. Avaliação de indicadores de uso diverso como inibidores de corrosão. Quím Nova. 28(5):756–760. doi:10.1590/S0100-40422005000500004.
  • Chen Z, Huang L, Zhang G, Qiu Y, Guo X. 2012. Benzotriazole as a volatile corrosion inhibitor during the early stage of copper corrosion under adsorbed thin electrolyte layers. Corros Sci. 65:214–222. doi:10.1016/j.corsci.2012.08.019.
  • Choudhury MR, Vidic RD, Dzombak DA. 2014. Inhibition of copper corrosion by tolyltriazole in cooling systems using treated municipal wastewater as makeup water. Arab J Sci Eng. 39(11):7741–7749. doi:10.1007/s13369-014-1385-z.
  • Fateh A, Aliofkhazraei M, Rezvanian AR. 2020. Review of corrosive environments for copper and its corrosion inhibitors. Arab J Chem. 13(1):481–544. doi:10.1016/j.arabjc.2017.05.021.
  • Fathabadi HE, Ghorbani M, Ghartavol HM. 2021. Corrosion inhibition of mild steel with tolyltriazole. Mat Res. 24(4):e20200395. doi:10.1590/1980-5373-mr-2020-0395.
  • Feng L, Zhang S, Lu Y, Tan B, Chen S, Guo L. 2019. Synergistic corrosion inhibition effect of thiazolyl-based ionic liquids between anions and cations for copper in HCl solution. Appl Surf Sci. 483:901–911. doi:10.1016/j.apsusc.2019.03.299.
  • Finšgar M, Milošev I. 2010. Inhibition of copper corrosion by 1,2,3-benzotriazole: a review. Corros Sci. 52(9):2737–2749. doi:10.1016/j.corsci.2010.05.002.
  • Frignani A, Tommesani L, Brunoro G, Monticelli C, Fogagnolo M. 1999. Influence of the alkyl chain on the protective effects of 1, 2, 3-benzotriazole towards copper corrosion: part I: inhibition of the anodic and cathodic reactions. Corros Sci. 41(6):1205–1215. doi:10.1016/S0010-938X(98)00191-7.
  • Gentil V. 2007. Corrosão. Rio de Janeiro: LTC Editora S.A.
  • Hameed RA, Al-Bonayan AM. 2021. Recycling of some water-soluble drugs for corrosion inhibition of steel materials: analytical and electrochemical measurements. J Optoelectron Biomed Mater. 13(2):45–55. doi:10.15251/JOBM.2021.132.45.
  • Hameed RA. 2018. Cationic surfactant-Zn2+ systems as mixed corrosion inhibitors for carbon steel in a sodium chloride corrosive medium. Port Electrochim Acta. 36(4):271–283. doi:10.4152/pea.201804271.
  • Hernández HH, Reynoso AR, González JT, Morán CG, Hernández JM, Ruiz AM, Cruz RO. 2020. Electrochemical impedance spectroscopy (EIS): a review study of basic aspects of the corrosion mechanism applied to steels. In: Electrochemical impedance spectroscopy. London (UK): IntechOpen. pp. 137–144.
  • Hollander O, May RC. 1985. The chemistry of azole copper corrosion inhibitors in cooling waters. Corrosion. 41(1):39–45. doi:10.5006/1.3581967.
  • Hsieh MK, Dzombak DA, Vidic RD. 2010. Effect of tolyltriazole on the corrosion protection of copper against ammonia and disinfectants in cooling systems. Ind Eng Chem Res. 49(16):7313–7322. doi:10.1021/ie100384d.
  • Jafari H, Akbarzade K, Danaee I. 2019. Corrosion inhibition of carbon steel immersed in a 1 M HCl solution using benzothiazole derivatives. Arab J Chem. 12(7):1387–1394. doi:10.1016/j.arabjc.2014.11.018.
  • Jmiai A, Tara A, El Issami S, Hilali M, Jbara O, Bazzi L. 2021. A new trend in corrosion protection of copper in acidic medium by using Jujube shell extract as an effective green and environmentally safe corrosion inhibitor: experimental, quantum chemistry approach and Monte Carlo simulation study. J Mol Liq. 322:114509. doi:10.1016/j.molliq.2020.114509.
  • Khan PF, Shanthi V, Babu RK, Muralidharan S, Barik RC. 2015. Effect of benzotriazole on corrosion inhibition of copper under flow conditions. J Environ Chem Eng. 3(1):10–19. doi:10.1016/j.jece.2014.11.005.
  • Kokalj A. 2021. Corrosion inhibitors: physisorbed or chemisorbed? Corros Sci. 196:109939. doi:10.1016/j.corsci.2021.109939.
  • Liu S, Guan WW, Yan YH, Jiang RY, Feng ZP, Song WJ, Qin K. 2013. Corrosion inhibition of copper–phosphorus brazing alloys in tetra-n-butylammonium bromide aerated aqueous solution by benzotriazole. Mater Corros. 64(10):932–939. doi:10.1002/maco.201106436.
  • Loo BH, Ibrahim A, Emerson MT. 1998. Analysis of surface coverage of benzotriazole and 6-tolyltriazole mixtures on copper electrodes from surface-enhanced Raman spectra. Chem Phys Lett. 287(3-4):449–454. doi:10.1016/S0009-2614(98)00058-X.
  • Majd MM, Kordzadeh-Kermani V, Ghalandari V, Askari A, Sillanpää M. 2022. Adsorption isotherm models: A comprehensive and systematic review (2010–2020). Sci Total Environ. 812:151334. doi:10.1016/j.scitotenv.2021.151334.
  • McCafferty E. 2005. Validation of corrosion rates measured by the Tafel extrapolation method. Corros Sci. 47(12):3202–3215. doi:10.1016/j.corsci.2005.05.046.
  • Melani LB, Ströher GR, Ströher GL. 2021. Estudo comparativo das isotermas de Langmuir e Freundlich em carvão de casca de coco verde com carvão comercial ativado. BJD. 7(3):22840–22851. doi:10.34117/bjdv7n3-142.
  • Metikoš-Huković M, Babić R, Paić I. 2000. Copper corrosion at various pH values with and without the inhibitor. J Appl Electrochem. 30(5):617–624. doi:10.1023/A:1003956102631.
  • Mo S, Qin TT, Luo HQ, Li NB. 2015. Insights into the corrosion inhibition of copper in hydrochloric acid solution by self-assembled films of 4-octylphenol. RSC Adv. 5(110):90542–90549. doi:10.1039/C5RA13074C.
  • Mohamad Alwi MA, Ahmad MN, Misnon II, Pauzi H, Normaya E. 2022. Gravimetric and electrochemical statistical optimizations for improving copper corrosion resistance in hydrochloric acid using thiosemicarbazone-linked 3-acetylpyridine. RSC Adv. 12(43):27793–27808. doi:https://doi.org/10.1039/d2ra05192c.
  • Nady H, El-Rabiei MM, Migahed MA, Fathy M. 2017. Corrosion control of Cu-10Al-10Ni and Cu-10Al-10Zn alloys in seawater environment by some ethoxylated tolyltriazole derivatives. Zeitschrift Für Physikalische Chemie. 231(6):1179–1209. doi:10.1515/zpch-2016-0886.
  • Oguike R, Oni O, Barambu A, Balarak D, Buba T, Okeke C, Momoh L, Onimisi S, Nwada W. 2021. Computational stimulation and experimental study on corrosion inhibition qualities of Emilia sonchifolia leaf extract for copper (CU131729) in hydrochloric acid. Comput Chem. 09(01):18–36. doi:10.4236/cc.2021.91002.
  • Polewska W, Vogt MR, Magnussen OM, Behm RJ. 1999. In situ STM study of Cu (111) surface structure and corrosion in pure and benzotriazole-containing sulfuric acid solution. J Phys Chem B. 103(47):10440–10451. doi:10.1021/jp991903l.
  • Quattrociocchi DGS, Santoro AS, Fonseca TNM, Conceição Júnior V, Paes LWC, Campos VR. 2022. Experimental and theoretical techniques applied to the study of organic corrosion inhibitors in acidic media. RSD. 11(9):e57811932321. doi:10.33448/rsd-v11i9.32321.
  • Quraishi MA, Chauhan DS, Saji VS. 2020. Heterocyclic organic corrosion inhibitors: principles and applications. Amsterdam: Elsevier.
  • Rouifi Z, El Faydy M, About H, Benhiba F, Ramsis H, Boudalia M, Lakhrissi B. 2018. Electrochemical and theoretical studies of adsorption and corrosion inhibition of ethyl 5-amino-1-((8-hydroxyquinolin-5-yl) methyl)-1H-1,2,3-triazole-4-carboxylate on carbon steel in acidic solution. J Mater Environ Sci. 9:453–465. doi:10.26872/jmes.2018.9.2.49.
  • Salhi A, Bouyanzer A, Chetouani A, El Barkany S, Amhamdi H, Hamdani I, Zarrouk A, Hammouti B, Desjobert JM, Costa J. 2017. Chemical composition of essential oil and antioxidant and anti-corrosion activity of extract and essential oil of Pennyroyal Mint (Mentha pulegium, MP). Mor J Chem. 5:5–1. doi:10.48317/IMIST.PRSM/morjchem-v5i1.6788.
  • Saranya J, Sowmiya M, Sounthari P, Parameswari K, Chitra S, Senthilkumar K. 2016. N-heterocycles as corrosion inhibitors for mild steel in acid medium. J Mol Liq. 216:42–52. doi:10.1016/j.molliq.2015.12.096.
  • Sastri VS. 2011. Green Corrosion inhibitors. Hoboken, New Jersey: John Wiley & Sons.
  • Shah AM, Rahim AA, Yahya S, Raja PB, Hamid SA. 2011. Acid corrosion inhibition of copper by mangrove tannin. Pigment Resin Technol. 40(2):118–122. doi:10.1108/03699421111113783.
  • Sharma S, Kumar A. 2021. Recent advances in metallic corrosion inhibition: a review. J Mol Liq. 322:114862. doi:10.1016/j.molliq.2020.114862.
  • Sherif ESM, Abbas AT, Gopi D, El-Shamy AM. 2014. Corrosion and corrosion inhibition of high strength low alloy steel in 2.0 M sulfuric acid solutions by 3-amino-1,2,3-triazole as a corrosion inhibitor. J Chem. 2014:1–8. doi:10.1155/2014/538794.
  • Simonović AT, Tasić ŽZ, Radovanović MB, Petrović Mihajlović MB, Antonijević MM. 2020. Influence of 5-chlorobenzotriazole on inhibition of copper corrosion in acid rain solution. ACS Omega. 5(22):12832–12841. doi:10.1021/acsomega.0c00553.
  • Solmaz R. 2010. Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Corros Sci. 52(10):3321–3330. doi:10.1016/j.corsci.2010.06.001.
  • Souza FS, Spinelli A. 2009. Caffeic acid as a green corrosion inhibitor for mild steel. Corros Sci. 51(3):642–649. doi:10.1016/j.corsci.2008.12.013.
  • Tamil SS, Raman V, Rajendran N. 2003. Corrosion inhibition of mild steel by benzotriazole derivatives in acidic medium. J Appl Electrochem. 33(12):1175–1182. doi:10.1023/B:JACH.0000003852.38068.3f.
  • Tomi IHR, Al-Daraji AH, Aziz SA. 2015. Synthesis, characterization, and study the inhibitory effect of thiazole and thiadiazole derivatives toward the corrosion of copper in acidic media. Synt React Inorg MetaOrg NanoMetal Chem. 45(4):605–613. doi:10.1080/15533174.2013.841226.
  • Törnkvist C, Thierry D, Bergman J, Liedberg B, Leygraf C. 1989. Methyl substitution in benzotriazole and its influence on surface structure and corrosion inhibition. J Electrochem Soc. 136(1):58–64. doi:10.1149/1.2096614.
  • Wang D, Gao L, Zhang D, Yang D, Wang H, Lin T. 2016. Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution. Mater Chem Phys. 169:142–151. doi:10.1016/j.matchemphys.2015.11.041.
  • Xu B, Ji Y, Zhang X, Jin X, Yang W, Chen Y. 2015. Experimental and theoretical studies on the corrosion inhibition performance of 4-amino-N,N-di-(2-pyridylmethyl)-aniline on mild steel in hydrochloric acid. RSC Adv. 5(69):56049–56059. doi:10.1039/C5RA09173J.
  • Yao JL, Ren B, Huang ZF, Cao PG, Gu RA, Tian ZQ. 2003. Extending surface Raman spectroscopy to transition metals for practical applications IV. A study on corrosion inhibition of benzotriazole on bare Fe electrodes. Electrochim Acta. 48(9):1263–1271. doi:10.1016/S0013-4686(02)00834-4.
  • Yu P, Liao DM, Luo YB, Chen ZG. 2003. Studies of benzotriazole and tolyltriazole as inhibitors for copper corrosion in deionized water. Corrosion. 59(4):314–318. doi:10.5006/1.3277563.
  • Yu Y, Wang Y, Li J, Zhang D, Gao L. 2016. In situ click-assembling monolayers on copper surface with enhanced corrosion resistance. Corros Sci. 113:133–144. doi:10.1016/j.corsci.2016.10.016.
  • Zhang T, Cao S, Quan H, Huang Z, Xu S. 2015. Synthesis and corrosion inhibition performance of alkyl triazole derivatives. Res Chem Intermed. 41(5):2709–2724. doi:10.1007/s11164-013-1381-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.