184
Views
2
CrossRef citations to date
0
Altmetric
Articles

Research Progress on CRISPR/Cas9: A Bibliometric Analysis Based on a SCI-Expanded Database

, , , , , & show all

References

  • Abramo, G., D’Angelo, C. A., & Viel, F. (2011). The field-standardized average impact of national research systems compared to world average: the case of Italy. Scientometrics, 88(2), 599–615. https://doi.org/10.1007/s11192-011-0406-x
  • Aerts, R. (2008). Digital identifiers could keep up with authors’ moves. Nature 454(7204), 575. https://doi.org/10.1038/454575c
  • Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712. https://doi.org/10.1126/science.1138140
  • Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling (2nd ed.). Springer.
  • Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41–52. https://doi.org/10.1016/j.biotechadv.2014.12.006
  • Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 system. Plant Physiology, 166(3), 1292–1297. https://doi.org/10.1104/pp.114.247577
  • Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., Dickman, M. J., Makarova, K. S., Koonin, E. V., & van der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891), 960–964.
  • Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G. W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., & Huang, B. (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7), 1479–1491. https://doi.org/10.1016/j.cell.2013.12.001
  • Chen, C., Dubin, R., & Kim, M. C. (2014). Emerging trends and new developments in re-generative medicine: A scientometric update (2000–2014). Expert Opinion on Biological Therapy, 14(9), 1295–1317. https://doi.org/10.1517/14712598.2014.920813
  • Cheng, A. W., Jillette, N., Lee, P., Plaskon, D., Fujiwara, Y., Wang, W., Taghbalout, A., & Wang, H. (2016). Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Research, 26(2), 254–257. https://doi.org/10.1038/cr.2016.3
  • Chiu, W. T., & Ho, Y. S. (2007). Bibliometric analysis of tsunami research. Scientometrics, 73(1), 3–17. https://doi.org/10.1007/s11192-005-1523-1
  • Esvelt, K. M., & Wang, H. H. (2013). Genome-scale engineering for systems and synthetic biology. Molecular Systems Biology, 9(1), 641. https://doi.org/10.1038/msb.2012.66
  • Fan, D., Liu, T., Li, C., Jiao, B., Li, S., Hou, Y., & Luo, K. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation. Science Reports, 5, 12217.
  • Fauser, F., Schiml, S., & Puchta, H. (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal: For Cell and Molecular Biology, 79(2), 348–359. https://doi.org/10.1111/tpj.12554
  • Feng, Z. Y., Zhang, B. T., Ding, W. N., Liu, X. D., Yang, D. L., Wei, P. L., Cao, F. Q., Zhu, S. H., Zhang, F., Mao, Y. F., & Zhu, J. K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229–1232. https://doi.org/10.1038/cr.2013.114
  • Gao, J. P., Wang, G. H., Ma, S. Y., Xie, X. D., Wu, X. W., Zhang, X. T., Wu, Y. Q., Zhao, P., & Xia, Q. Y. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology, 87(1-2), 99–110. https://doi.org/10.1007/s11103-014-0263-0
  • Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., Verdine, V., Donghia, N., Daringer, N. M., Freije, C. A., Myhrvold, C., Bhattacharyya, R. P., Livny, J., Regev, A., Koonin, E. V., Hung, D. T., Sabeti, P. C., Collins, J. J., & Zhang, F. (2017). Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 356(6336), 438–442. https://doi.org/10.1126
  • Hale, C. R., Majumdar, S., Elmore, J., Pfister, N., Compton, M., Olson, S., Resch, A. M., Glover, C. V. C., Graveley, B. R., Terns, R. M., & Terns, M. P. (2012). Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Molecular Cell, 45(3), 292–302. https://doi.org/10.1016/j.molcel.2011.10.023
  • Hom, L. (2017). Patent pools for CRISPR technology. Science, 355, 1274.
  • Hwang, W. Y., Fu, Y. F., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R. J., & Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31(3), 227–229. https://doi.org/10.1038/nbt.2501
  • Jia, H. G., & Wang, N. (2014). Targeted genome editing of sweet orange using Cas9/sgRNA. PLOS One, 9, e93806. https://doi.org/10.1371/journal.pone.0093806
  • Jiang, W. Z., Zhou, H. B., Bi, H. H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188–e188. https://doi.org/10.1093/nar/gkt780
  • Liang, Z., Zhang, K., Chen, K. L., & Gao, C. X. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas System. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 41(2), 63–68. https://doi.org/10.1016/j.jgg.2013.12.001
  • Liu, C. M. (2015). Auxin binding protein 1 (ABP1): A matter of fact. Journal of Integrative Plant Biology, 57(3), 234–235. https://doi.org/10.1111/jipb.12339
  • Ma, X. L., Zhang, Q. Y., Zhu, Q. L., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z. F., Li, H. Y., Lin, Y. R., Xie, Y. Y., Shen, R. X., Chen, S. F., Wang, Z., Chen, Y. L., Guo, J. X., Chen, L. T., Zhao, X. C., Dong, Z. C., & Liu, Y. G. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in Monocot and Dicot Plants. Molecular Plant, 8(8), 1274–1284. https://doi.org/10.1016/j.molp.2015.04.007
  • Mao, G. Z., Zou, H. Y., Chen, G. Y., Du, H. B., & Zuo, J. (2015). Past, current and future of biomass energy research: A bibliometric analysis. Renewable and Sustainable Energy Reviews, 52, 1823–1833. https://doi.org/10.1016/j.rser.2015.07.141
  • Miao, J., Guo, D. S., Zhang, J. Z., Huang, Q. P., Qin, G. J., Zhang, X., Wan, J. M., Gu, H. Y., & Qu, L. J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23(10), 1233–1236. https://doi.org/10.1038/cr.2013.123
  • Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31(8), 691–693. https://doi.org/10.1038/nbt.2655
  • ORCID. (2011). ORCID funding and development efforts on target: Thomson Reuters Proxides Royalty-Free License for Research ID Code to Accelerate Development. ORCID Inc.
  • Pan, C. T., Ye, L., Qin, L., Liu, X., He, Y. J., Wang, J., Chen, L. F., & Lu, G. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6, 24765.
  • Puchta, H., & Fauser, F. (2013). Gene targeting in plants: 25 years later. The International Journal of Developmental Biology, 57(6-8), 629–637. https://doi.org/10.1387/ijdb.130194hp
  • Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308. https://doi.org/10.1038/nprot.2013.143
  • Schwartz, R. L., Phoenix, T., & Foy, B. D. (2015). Learning Perl. O’Reilly publisher.
  • Shakiba, M., Zavvari, A., Aleebrahim, N., & Singh, M. J. (2016). Evaluating the academic trend of RFID technology based on SCI and SSCI publications from 2001 to 2014. Scientometrics, 109(1), 591–614. https://doi.org/10.1007/s11192-016-2095-y
  • Stephan, P., Veugelers, R., & Wang, J. (2017). Reviewers are blinkered by bibliometrics. Nature, 544(7651), 411–412. https://doi.org/10.1038/544411a
  • Sugano, S. S., Shirakawa, M., Takagi, J., Matsuda, Y., Shimada, T., Hara-Nishimura, I., & Kohchi, T. (2014). CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant and Cell Physiology, 55(3), 475–481. https://doi.org/10.1093/pcp/pcu014
  • Sui, X. Y., Chen, Y. X., Lu, Z., & Chen, Y. F. (2015). A bibliometric analysis of research papers related to the Mekong River. Scientometrics, 105(1), 419–434. https://doi.org/10.1007/s11192-015-1683-6
  • Sun, X. J., Hu, Z., Chen, R., Jiang, Q. Y., Song, G. H., Zhang, H., & Xi, Y. J. (2015). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Scientific Reports, 5, 10342. https://doi.org/10.1038/srep10342.
  • Tan, W., Carlson, D. F., Walton, M. W., Fahrenkrug, S. C., & Hackett, P. B. (2012). Precision editing of large animal genomes. Advances in Genetics, 80, 37–97. https://doi.org/10.1016/B978-0-12-404742-6.00002-8
  • van Eck, N. J., Waltman, L. (2016). VOSviewer 1.6.5. http://www.vosviewer.com/.
  • van Eck, N. J., Waltman, L., Dekker, R., & van den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405–2416. https://doi.org/10.1002/asi.21421
  • Wang, Y. P., Cheng, X., Shan, Q. W., Zhang, Y., Liu, J. X., Gao, C. X., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9), 947–951. https://doi.org/10.1038/nbt.2969
  • WHOCD. (2019). World Health Organization Coronavirus Disease (COVID-19) dashboard. https://who.sprinklr.com/.
  • 2015 Journal Impact Factor. (2016). Journal citation reports. Clarivate Analytics.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.