164
Views
3
CrossRef citations to date
0
Altmetric
Research articles

A potato intragene overexpressing GSL1 confers resistance to Pectobacterium atrosepticum

ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 212-230 | Received 20 Aug 2021, Accepted 20 Dec 2021, Published online: 12 Jan 2022

References

  • Almasia NI, Bazzini AA, Hopp HE, Vazquez-Rovere C. 2008. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol. 9:329–338.
  • Almasia NI, Nahirñak V, Hopp HE, Vazquez-Rovere C. 2020. Potato snakin-1: an antimicrobial player of the trade-off between host defense and development. Plant Cell Rep. 39:839–849.
  • Balaji V, Smart CD. 2011. Over-expression of snakin-2 and extension-like protein genes restricts pathogen invasiveness and enhances tolerance to clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res. 21:23–37.
  • Barrell PJ, Conner AJ. 2006. Minimal T-DNA vectors suitable for agricultural deployment of transgenic plants. BioTechniques. 41:708–710.
  • Barrell PJ, Conner AJ. 2009. Expression of a chimeric magainin gene in potato confers improved resistance to the phytopathogen Erwinia carotovora. Open Plant Sci J. 3:14–21.
  • Barrell PJ, Jacobs JME, Baldwin SJ, Conner AJ. 2010. Intragenic vectors for plant transformation within gene pools. CAB reviews: perspectives in agriculture, veterinary science. Nutr Nat Resour. 5(010):18.
  • Barrell PJ, Meiyalaghan S, Jacobs JME, Conner AJ. 2013. Applications of biotechnology and genomics in potato improvement. Plant Biotechnol J. 11:907–920.
  • Bernatzky R, Tanksley SD. 1986. Genetics of actin-related sequences in tomato. Theor Appl Genet. 72:314–321.
  • Berrocal-Lobo M, Segura A, Moreno M, López G, García-Olmedo F, Molina A. 2002. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol. 128:951–961.
  • Caaveiro JMM, Molina A, González-Mañas JM, Rodríguez-Palenzuela P, García-Olmedo F, Goñi FM. 1997. Differential effect of five types of antipathogenic plant peptides on model membranes. FEBS Letters. 410:338–342.
  • Conner AJ, Barrell PJ, Baldwin SJ, Lokerse AS, Cooper PA, Erasmuson AK, Nap JP, Jacobs JME. 2007. Intragenic vectors for gene transfer without foreign DNA. Euphytica. 154:341–353.
  • Conner AJ, Christey MC. 1994. Plant breeding and seed marketing options for the introduction of transgenic insect-resistant crops. Biocontrol Sci Technol. 4:463–473.
  • Conner AJ, Glare TR, Nap JP. 2003. The release of genetically modified crops into the environment: II. overview of ecological risk assessment. Plant J. 33:19–46.
  • Conner AJ, Jacobs JME. 1999. Genetic engineering of crops as potential source of genetic hazard in the human diet. Mutat Res. 443:223–234.
  • Conner AJ, Williams MK, Abernethy DJ, Fletcher PJ, Genet RA. 1994. Field testing of transgenic potatoes. N Z J Crop Hortic Sci. 22:361–371.
  • Conti G, Gardella V, Vandecaveye MA, Gomez CA, Joris G, Hauteville C, Burdyn L, Almasia NI, Nahirñak V, Vazquez-Rovere C, et al. 2020. Transgenic citrange troyer rootstocks overexpressing antimicrobial potato snakin-1 show reduced citrus canker disease symptoms. J Biotechnol. 324:99–102.
  • Czajkowski R, Perombelon MCM, Van Veen JA, Van der Wolf JM. 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and dickeya species. Plant Pathol. 60:999–1013.
  • Darqui FS, Radonic LM, Trotz PM, López N, Vázquez-Rovere C, Hopp HE, López-Bilbao M. 2018. Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and sclerotinia sclerotiorum in transgenic lettuce. J Biotechnol. 283:62–69.
  • Das K, Datta K, Sarkar SN, Datta SK. 2021. Expression of antimicrobial peptide snaking-1 confers effective protection in rice against sheath blight pathogen, Rhizoctonia solani. Plant Biotechnol Rep. 15:39–54.
  • Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus. 12:13–15.
  • Faccio P, Vazquez-Rovere C, Hopp E, González G, Décima-Oneto C, Favret E, Díaz-Paleo A, Franzone P. 2011. Increased tolerance to wheat powdery mildew by heterologous constitutive expression of the Solanum chacoense snakin-1 gene. Czech J. Genet. Plant Breed. 47:S135–S141.
  • García AN, Ayub ND, Fox AR, Gómez MC, Diéguez MJ, Pagano EM, Berini CA, Muschiette JP, Soto G. 2014. Alfalfa snakin-1 prevents fungal colonisation and probably coevolved with rhizobia. BMC Plant Biol. 14:248.
  • Goyal RK, Mattoo AK. 2014. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci. 228:135–149.
  • Höfgen R, Willmitzer L. 1988. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16:9877.
  • Hood EE, Gelvin SB, Melchers LS, Hoekema A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2:208–218.
  • Hyman LJ, Sullivan L, Toth IK, Pérombelon MCM. 2001. Modified crystal violet pectate medium (CVP) based on a new polypectate source (slendid) for the detection and isolation of soft rot erwinias. Potato Res. 44:265–270.
  • Kovalskaya N, Hammond RW. 2009. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expres Purif. 63:12–17.
  • Mao ZC, Zheng JY, Wang YS, Chen GH, Yang YH, Feng DX, Xie BY. 2011. The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica. 39:151–164.
  • Meiyalaghan S, Jacobs JME, Butler RC, Wratten SD, Conner AJ. 2006. Expression of cry1Ac9 and cry9Aa2 genes under a potato light-inducible Lhca3 promoter in transgenic potatoes for tuber moth resistance. Euphytica. 147:297–309.
  • Meiyalaghan S, Thomson SJ, Fiers MWEJ, Barrell PJ, Latimer JM, Mohan S, Jones EE, Conner AJ, Jacobs JME. 2014. Structure and expression of GSL1 and GSL2 genes encoding Gibberellin Stimulated-Like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status. BMC Genomics. 15:2.
  • Mohan S, Meiyalaghan S, Latimer JM, Gatehouse ML, Monaghan KS, Vanga BR, Pitman AP, Jones EE, Conner AJ, Jacobs JME. 2014. GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato. Theor Appl Genet. 127:677–689.
  • Nahirñak V, Almasia NI, Fernandez PV, Hopp HE, Estevez JM, Carrari F, Vazquez-Rovere C. 2012. Potato snakin-1 gene silencing affects cell division, primary metabolism and cell wall composition. Plant Physiol. 158:252–263.
  • Nahirñak V, Rivarola M, de Urreta MG, Paniego N, Hopp HE, Almasia NI, Vazquez-Rovere C. 2016. Genome-wide analysis of the snakin/GASA gene family in Solanum tuberosum cv. kennebec. Am J Potato Res. 93:172–188.
  • Nap JP, van Spanje M, Dirkse WG, Baarda G, Mlynarova L, Loonen A, Grondhuis P, Stiekema WJ. 1993. Activity of the promoter of the Lhca3.St.1 gene, encoding the potato apoprotein 2 of the light-harvesting complex of photosystem I, in transgenic potato and tobacco plants. Plant Mol Biol. 23:605–612.
  • Nicot N, Hausman JF, Hoffmann L, Evers D. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 56:2907–2914.
  • Oliveira-Lima M, Benko-Iseppon AM, Neto JRCF, Rodriguez-Decuadro S, Kido EA, Crovella S, Pandolfi V. 2017. Snakin: structure, roles and applications of a plant antimicrobial peptide. Curr Protein Pept Sci. 18:1–7.
  • Rodriguez-Decuadro S, Barraco-Vega M, Dans PD, Pandolfi V, Benko-Iseppon AM, Cecchetto G. 2018. Antimicrobial and structural insights of a new snaking-like peptide isolated from peltophorum dubium (fabaceae). Amino Acids. 50:1245–1259.
  • Rong W, Qi L, Wang JF, Du LP, Xu HJ, Wang AY, Zhang ZY. 2013. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen gaeumannomyces graminis var. tritici in transgenic wheat. Funct Integr Genomics. 13:403–409.
  • Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F. 1999. Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant-Microbe Interact. 12:16–23.
  • Sokal RR, Rohlf FJ. 1969. Biometry: The principles and practice of statistics in biological research. San Francisco, USA: Freeman & Co.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.