257
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

The cluster glass route of relaxor ferroelectrics

, &
Pages 234-244 | Received 20 Aug 2014, Accepted 03 Oct 2014, Published online: 17 Nov 2014

References

  • Levstik A, Kutnjak Z, Filipič C, Pirc R. Glassy freezing in relaxor ferroelectric lead magnesium niobate. Phys Rev B. 1998;57:11204–11211.
  • Dec J, Kleemann W, Łukasiewicz T. Critical slowing down in the single crystalline relaxor SBN75. Phase Trans. 2006;79:505–511.
  • Phelan D, Stock C, Rodriguez-Rivera JA, Chi SX, Leão J, Long XF, Xie YJ, Bokov AA, Ye Z-G, Ganesh P, Gehring PM. The role of random electric fields in relaxors. Proc Nat Acad Sci. 2014;111:1754–1759.
  • Westphal V, Kleemann W, Glinchuk MD. Diffuse phase transitions and random-field induced domain states of the ‘relaxor’ ferroelectric Pb(Mg1/3Nb2/3)O3. Phys Rev Lett. 1992;68:847–850.
  • Imry I, Ma SK. Random-field instability of the ordered state of continuous symmetry. Phys Rev Lett. 1975;35:1399–1402.
  • Shvartsman VV, Kleemann W, Łukasiewicz T, Dec J. Nanopolar structure in SrxBa1−xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy. Phys Rev B. 2008;77:054105.
  • Fisher DS. Scaling and critical slowing down in random-field Ising systems. Phys Rev Lett. 1986;56:416–419.
  • Kleemann W. Glassy phenomena in relaxor ferroelectrics. In: Saxena A, Planes A, editors. Mesoscopic phenomena in multifunctional materials. Springer Ser. Mater Sci. 2014;198:249–269.
  • Binder K, Young AP. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev Mod Phys. 1986;58:801–976.
  • Dec J, Kleemann W, Miga S, Shvartsman VV, Łukasiewicz T, Świrkowicz M. Aging, rejuvenation, and memory effects in the domain state of Sr0.75Ba0.25Nb2O6. Phase Trans. 2007;80:131–137.
  • Vincent E. Aging, rejuvenation and memory: the example of spin glasses. Ageing Glass Trans. 2007;716:7–58.
  • Cross LE. Relaxor ferroelectrics. Ferroelectrics. 1987;76:241–267.
  • Fu D, Taniguchi H, Itoh M, Koshihara S.-Y, Yamamoto N, Mori S. Relaxor PbMg1/3Nb2/3O3: a ferroelectric with multiple inhomogeneities. Phys Rev Lett. 2009;103:207601.
  • Novak N, Pirc R, Wencka M, Kutnjak Z. High-resolution calorimetric study of Pb(Mg1/3Nb2/3)O3 single crystal. Phys Rev Lett. 2012;109:037601.
  • Shvartsman VV, Zhai J, and Kleemann W. The dielectric relaxation in solid solutions BaTi1−xZrx O3. Ferroelectrics. 2009;379:77–85.
  • Shvartsman VV, Dec J, Xu ZK, Banys J, Keburis P, Kleemann W. Crossover from ferroelectric to relaxor behavior in BaTi1−xSnxO3 solid solutions. Phase Trans. 2008;81:1013–1021.
  • Shvartsman VV, Kleemann W, Dec J, Xu ZK, Lu SG. Diffuse phase transition in BaTi1−xSnxO3 ceramics: an intermediate state between ferroelectric and relaxor behavior. J Appl Phys. 2006;99:124111.
  • Farhi R, El Marssi M, Simon A, Ravez J. A Raman and dielectric study of ferroelectric Ba(Ti1−xZrx)O3 ceramics. Eur Phys J B. 1999;9:599–604.
  • Laulhé C, Hippert F, Bellissent R, Simon A, Cuello GJ. Local structure in BaTi1−xZrxO3 relaxors from neutron pair distribution function analysis. Phys Rev B. 2009;79:064104.
  • Laulhé C, Hippert F, Kreisel J, Pasturel A, Simon A, Hazemann J.-L, Bellissent R, Cuello GJ. Random local strain effects in the relaxor ferroelectric BaTi1−x ZrxO3: experimental and theoretical investigation. Phase Trans. 2011;84:438–452.
  • Kleemann W. Random fields in relaxor ferroelectrics: a jubilee review. J Adv Dielectr. 2012;2:124001.
  • Laulhé C, Hippert F, Kreisel J, Maglione M, Simon A, Hazemann JL, Nassif V. EXAFS study of lead-free relaxor ferroelectric BaTi1−xZrxO3 at the Zr K edge. Phys Rev B 2006;74:014106.
  • Kleemann W. Random-field induced antiferromagnetic, ferroelectric and structural domain states. Int J Mod Phys B. 1993;7:2469–2507.
  • Glinchuk MD, Kondakova IV. Influence of the random elastic fields on the phase transitions in disordered ferroelectrics. Solid State Commun. 1995;96:529–534.
  • Tsukasaki H, Inoue Y, Koyama Y. Direct observation of the polar state in the relaxor Ba(Ti1-xZrx)O3 by transmission electron microscopy. Ferroelectrics. 2014;460:18–33.
  • Tagantsev AK. Vogel–Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics. Phys Rev Lett. 1994;72:1100–1103.
  • Binder K, Reger J. Theory of orientational glasses models, concepts, simulations. Adv Phys. 1992;41:547–627.
  • Kleemann W, Miga S, Dec J, Zhai J. Crossover from ferroelectric to relaxor and cluster glass in BaTi1−xZrxO3x = 0.25–0.35) studied by non-linear permittivity. Appl Phys Lett. 2013;102:232907.
  • Hessinger J, Knorr K. Shear elasticity of mixed cyanide orientational glass. Phys Rev B 1993;47:14813–14822.
  • Taniguchi T, Makisaka K. Critical phenomena of canonical spin glass systems with large Dzyaloshinsky–Moriya anisotropy. J Phys Conf Ser. 2011;320:012046.
  • Bitla Y, Kaul SN, Barquín LF. Nonlinear susceptibilities as a probe to unambiguously distinguish between canonical and cluster spin glasses. Phys Rev B. 2012;86:094405.
  • Pirc R, Tadić B, and Blinc R. Nonlinear susceptibility of orientational glasses. Phys B. 1994;193:109–115.
  • Dec J, Kleemann W, Trybuła Z, Miga S, unpublished.
  • Jönsson PE. Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems. Adv Chem Phys. 2004;128:191–248.
  • Parisi G, Rizzo T. Critical dynamics in glassy systems. Phys Rev E. 2013;87:012101.
  • Kleemann W, Miga S, Xu ZK, Lu SG, Dec J. Non-linear permittivity study of the crossover from ferroelectric to relaxor and cluster glass in BaTi1−xSnxO3 (x = 0.175-0.30). Appl Phys Lett 2014;104:182910.
  • Smolenskii GA, Isupov VA. Dielectric polarization and losses of some complex compounds. Dokl Akad Nauk SSSR. 1954;97:653.
  • Akbardazeh AR, Prosandeev S, Walter EJ, Al-Barakaty A, Bellaiche L. Finite temperature properties of Ba(Zr,Ti)O3 relaxors from first principles. Phys Rev Lett. 2012;108:257601.
  • Sherrington D. BZT: a soft pseudospin glass. Phys Rev Lett. 2013;111:227601.
  • Middleton AA. Numerical investigation of the thermodynamic limit for ground states in models with quenched disorder. Phys Rev Lett. 1999;83:1672–1675.
  • Manley ME, Lynn JW, Abernathy DL, Specht ED, Delaire O, Bishop AR, Sahul R, Budai JD. Phonon localization drives polar nanoregions in a relaxor ferroelectric. Nat Commun. 2014;5:3683, 1–9. doi: 10.1038/ncomms4683.
  • Nuzhnyy D, Petzelt J, Savinov M, Ostapchuk T, Bovtun V, Kempa M, Hlinka J, Buscaglia V, Buscaglia MT, Nanni P. Broadband dielectric response of Ba(Zr,Ti)O3 ceramics: from incipient via relaxor and diffuse up to classical ferroelectric behavior. Phys Rev B. 2012;86:014106.
  • Bedanta S, Kleemann W. Supermagnetism. J Phys D. 2009;42:013001.
  • Fishman S, Aharony A. Random field effects in disordered anisotropic antiferromagnets. J Phys C. 1979;12:L729–L733.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.