Publication Cover
Phase Transitions
A Multinational Journal
Volume 88, 2015 - Issue 5
152
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Phase transitions and electrical conduction in thermal energy storage compound (n-C12H25NH3)2CdCl4

, &
Pages 445-460 | Received 17 Jun 2014, Accepted 18 Oct 2014, Published online: 06 Dec 2014

References

  • Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochim Acta. 2012;540:7–60.
  • Yuksel N, Avci A, Kilic M. A model for latent heat energy storage systems. Int J Energy Res. 2006;30(14):1146–1157.
  • Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45:1597–1615.
  • Mhike W, Focke WW, Mofokeng JP, Luyt AS. Thermally conductive phase change materials for energy storage based on low-density polyethylene, soft Fischer–Tropsch wax and graphite. Thermochim Acta. 2012;527:5–82.
  • Haillot D, Bauer T, Kröner U, Tamme R. Thermal analysis of phase change materials in the temperature range −120–150°C. Thermochim Acta. 2011;513:49–59.
  • Li W, Zhang D, Zhang T, Wang T, Ruan D, Xing D, Li H. Study of solid–solid phase change of (n-CnH2n+1NH3)2MCl4 for thermal energy storage. Thermochim Acta. 1999;326:183–186.
  • Lu DF, Di YY, He DH. Crystal structures and thermodynamic properties of phase change materials (1-CnH2n+1NH3)2CdCl4 (s) (n = 15 and 16). Renew Energy. 2013;50:498–505.
  • Hawes DW, Banu D, Feldman D. Latent heat storage in concrete. II. Sol Energy Mater. 1990;21:61–80.
  • Wd LI, Ding EY. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material. Sol Energy Mater. 2007;91:764–768.
  • Busico V, Carfagna C, Salerno V. The layer perovskite as thermal energy storage system. Sol Energy. 1980;24:575–579.
  • Kind R, Plesko S, Arend H, Blinc R, Zeks B, Seliger J, Lozar B, Slak J, Levstik A, Filipic C, Zagar V, Lahajnar G, Milia F, Chapuis G. Dynamics of the n-decylammonium chains in the perovskite type layer structure compound (C10H21NH3)2CdCl4. J Chem Phys. 1979;71(5):2118–2130.
  • Ruiyun X, Dejun K, Xian EC, Jing Z. Study of solid–solid phase transitions for (n-C18H37NH3)2MCl4. Thermochim Acta. 1990;164:307–314.
  • Ning G, Guangfu Z, Shiqnan X. An infrared spectroscopic study of the structural phase transition in the perovskite-type layer compound [n-C16H33NH3]2CoCl4. J Phys Chem Solids. 1992;53:437–441.
  • Needham GF, Willett RD, Franzen HF. Phase transitions in crystalline models of bilayers. 1. Differential scanning calorimetric and X-ray studies of (C12H25NH3)2MCl4 and (C14H29NH3)2MCl4 salts (M = Mn2+, Cd2+, Cu2+). J Phys Chem. 1984;88:674–680.
  • Kun Kang J, Choy J, Rey-Lafon M. Phase transition behavior in the perovskite-type layer compound (n-C12H25NH3)2CuCl4. J Phys Chem Solids. 1993;54:1567–1577.
  • Horiuchi K, Takayama H, Ishimaru SI, Ikeda R. Cationic motions and order–disorder phase transitions in layer crystals with a rotator phase (n-C5H11NH3)2ZnCl4 and (n-C12H25NH3)2ZnCl4. Bull Chem Soc Jpn. 2000;73:307–314.
  • Socias C, Arriandiaga MA, Telio MJ, Fernandez J, Gili P. High-temperature phase transitions in (CnH2n+1NH3)2ZnCl4 compounds. Phys Stat Sol A. 1980;57:405–410.
  • Fenrych J, Reynhardt EC, Jurga S, Jurga K. Molecular motions and phase changes in the perovskite-type compound (C10H21NH3)2ZnCl4. Mol Phys. 1993;78:1117–1128.
  • De Jongh LJ. Magnetic properties of layered transition metal compounds. Dordrecht: Kluwer Academic Publishers; 1990.
  • Lee KW, Lee CH, Lee CE. Observation of piezomagnetism in a Heisenberg paramagnet. J Magnet. 2002;7(1):1–3.
  • Lee CH, Lee KW, Lee CE. Quasi-two-dimensional magnetism in (CnH2n+1NH3)2CuCl4 studied by electron paramagnetic resonance. Curr Appl Phys. 2003;3(6):477–479.
  • Kapustianyk V, Panasyuk M, Partyka M, Rudyk V, Tsybulskyy V. Spectroscopic study of the low-dimensional (C3H7NH3)2CdCl4 crystal irradiated with X-rays. Phys Status Solidi. 2009;B246:1686–1691.
  • Lu D, Di Y, He D. Crystal structure and thermodynamic properties of phase change material bis(1-dodecyleammonium) tetrachlorochromate (C12H25NH3)2CdCl4(s). Phase Trans. 2013;86:1038–1050.
  • Chanh NB, Housty JR, Meresse A, Ricard L, Rey-Lafon M. Polymorphism in the bidimensional compound (n-C16H33NH3)2CdCl4. J Phys Chem Solids. 1989;50:829–838.
  • White MA. Energetics of long alkyl chains embedded in a crystalline matrix: (nC18H37)2CdCl4. J Chem Phys. 1984;81:6100–6105.
  • Lu DF, Di YY, Dou JM. Synthesis, crystal structure and low-temperature heat capacities of bis(n-undecylammonium) tetrachlorocadmiumate. Acta Chim Sin. 2012;70:889–896.
  • Ricard L, Cavagnat R, Rey-Lafon M. Vibrational study of the dynamics of n-alkylammonium chains in the perovskite-type layer compounds (CnH2n+1NH3)2CdCl4 (n = 8, 12, 16). J Phys Chem. 1985;89(22):4887–4894.
  • Chanh NB, Hauw C, Meresse A, Rey-Lafon M, Ricard L. X-ray diffraction, differential scanning calorimetric and spectroscopic studies of phase transitions in the bidimensional compound (C12H25NH3)2CdCl4. J Phys Chem Solids. 1985;46:1413–1420.
  • Abdel Kader MM, El-Kabbany F, Naguib HM, Gamal WM. Dielectric behavior and low temperature phase transition in NH4IO3. Phase Trans. 2013;86:947–958.
  • Abdel-Kader MM, El-Kabbany F, Naguib HM, Gamal WM. Charge transport mechanism and low temperature phase transitions in KIO3. J Phys Conf Ser. 2013;423:1–17.
  • Mostafa MF, Abdel-Kader MM, Arafat SS. Conductivity and permittivity studies in the diluted Perovskite system [(NH3)(CH2)6(NH3)]FxZn1-xCl4, x = 1, 0.8, 0.5, and 0. Z Naturforsch. 2002;57a:897–908.
  • Abdel-Kader MM, El-Tanahy ZH, Abu-Taleb M, Aboushly A, El-Sharkawy A. Electrical and thermal evidence for a phase transition in potassium tartrate. Philos Mag B. 1995;72:91–99.
  • Jonscher AK. Dielectric relaxation in solids, Chelsea. London: Dielectrics Press; 1983. Chapter 5.
  • Dyre JC, Schroder TB. Relaxation processes in glass. Rev Mod Phys. 2000;72:873–892.
  • Elliott SR. AC conduction in amorphous-chalcogenide and pnictide semiconductors. Adv Phys. 1987;36:135–218.
  • Louati B, Gargouri M, Guidara K, Mhiri T. AC electrical properties of the mixed crystal (NH4)3H(SO4)1.42(SeO4)0.58. J Phys Chem Sol. 2005;66:762–765.
  • Karthik C, Varma KBR. Dielectric and AC conductivity behavior of $BaBi_2Nb_2O_9$ ceramics. J Phys Chem Sol. 2006;67:2437–2441.
  • Chen RH, Yen CC, Shern CS, Fukami T. Impedance spectroscopy and dielectric analysis in KH2PO4 single crystal. Sol State Ion. 2006;177:2857–2864.
  • Lee WK, Liu JF, Nowick AS. Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality. Phys Rev Lett. 1991;67:1559–1561.
  • Moawad HMM, Jain H, El-Mallawany R. DC conductivity of silver vanadium tellurite glasses. J Phys Chem Sol. 2009;70:224–233.
  • Long AR. Frequency-dependent loss in amorphous semiconductors. Adv Phys Lett. 1982;31:553–637.
  • Gmati F, Fattoum A, Bohli N, Dhaoui W, Mohamed AB. Comparative studies of the structure morphology and electrical conductivity of polyaniline weakly doped with chlorocarboxylic acids. J Phys Condens Matter. 2007;19:326201–326213.
  • Austin IG, Mott NF. Polarons in crystalline and non-crystalline materials. Adv Phys. 1969;18:41–102.
  • Pollak M. On the frequency dependence of conductivity in amorphous solids. Philos Mag. 1971;23:519–543.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.