Publication Cover
Phase Transitions
A Multinational Journal
Volume 89, 2016 - Issue 9
154
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Cluster formation in binary charge-stabilized colloidal suspensions confined to a two-dimensional plane

, &
Pages 863-884 | Received 29 Jun 2015, Accepted 17 Aug 2015, Published online: 13 Oct 2015

References

  • Robbins MO, Kremer K, Grest GS. Phase diagram and dynamics of Yukawa systems. J Chem Phys. 1988;88:3286–3312.
  • Kjellander R, Mitchell D. An exact but linear and Poisson-Boltzmann-like theory for electrolytes and colloid dispersions in the primitive model. Chem Phys. Lett. 1992;200:76–82.
  • Bonitz M, Donkó Z, Ott T, et al. Nonlinear magnetoplasmons in strongly coupled Yukawa plasmas. Phys Rev Lett. 2010;105:055002 (1–3).
  • Morfill GE, Ivlev AV. Complex plasmas: an interdisciplinary field. Rev Mod Phys. 2009; 81:1353–1404.
  • Hamaguchi S. Strongly coupled Yukawa plasmas – models for dusty plasmas and colloidal suspensions. Plasma Ions. 1999;2:57–68.
  • Gericke DO, Wünsch AGK, Vorberger J. Structural properties of warm dense matter. J Phys: Conf Ser. 2010;220:012001 (1–12).
  • Barrat JL, Hansen JP, Mochkovitch R. Crystallization of carbon-oxygen mixtures in white dwarf. Astron Astrophys. 1988;199:L15–L18.
  • Jackson JD. Classical electrodynamics. New York (NY): Wiley; 1975.
  • Alexander S, Chaikin PM, Grant P, et al. Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: theory. J Chem Phys. 1984;80:5776–5781.
  • Derjaguin BV, Landau L. Theory of stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim URSS. 1941;14:633–662.
  • Verwey EJW, Overbeek JTG. Theory of the stability of lyophobic colloids. Amsterdam: Elsevier; 1948.
  • Hornekær L, Kjærgaard N, Thommesen AM, et al. Structural properties of two-component coulomb crystals in linear Paul traps. Phys Rev Lett. 2001;86:1994–1997.
  • Matthey T, Hansen JP, Drewsen M. Coulomb bicrystals of species with identical charge-to-mass ratios. Phys Rev Lett. 2003;91:165001 (1–4).
  • Hynninen AP, Christova CG, van Roij R, et al. Prediction and observation of crystal structures of oppositely charged colloids. Phys Rev Lett. 2006;96:138308 (1–4).
  • Zahn K, Méndez-Alcaraz JM, Maret G. Hydrodynamic interactions may enhance the self-diffusion of colloidal particles. Phys Rev Lett. 1997;79:175–178.
  • Zahn K, Lenke R, Maret G. Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys Rev Lett. 1999;82:2721–2724.
  • Wu D, Chandler D, Smit B, Electrostatic analogy for surfactant assemblies. J Phys Chem. 1992;96:4077–4083.
  • Sear RP, Chung S-W, Markovich G, Spontaneous patterning of quantum dots at the air-water interface. Phys Rev E. 1999;59:R6255–R6258.
  • Groenewold J, Kegel WK. Anomalously large equilibrium clusters of colloids. J Phys Chem B. 2001;105:11702–11709.
  • Muratov CB. Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys Rev E. 2002;66:066108 (1–25).
  • Godfrin PD, Castañeda-Priego R, Liu Y, et al. Intermediate range order and structure in colloidal dispersions with competing interactions. J Chem Phys. 2013;139:154904 (1–10).
  • Sciortino F, Mossa S, Zaccarelli E, et al. Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys Rev Lett. 2004;93:055701 (1–4).
  • Wu J, Liu Y, Chen W-R, et al. Structural arrest transitions in fluids described by two Yukawa potentials. Phys Rev E. 2004;70:050401(R) (1–4).
  • Toledano JCF, Sciortino F, Zaccarelli E. Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gel. Soft Matter. 2009;5:2390–2398.
  • Meakin P. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys Rev Lett. 1983;51:1119–1122.
  • Lin MY, Lindsay HM, Weitz DA, et al. Universality in colloid aggregation. Nature (London). 1989;339:360–362.
  • Stradner A, Sedgwick H, Cardinaux F, et al. Equilibrium cluster formation in concentrated protein solutions and colloids Nature (London). 2004;432:492–495.
  • Cardinaux F, Zaccarelli E, Stradner A, et al. Cluster-driven dynamical arrest in concentrated lysozyme solutions. J Phys Chem B. 2011;115:7227–7237.
  • Sedgwick H, Egelhaaf SU, Poon WCK. Clusters and gels in systems of sticky particles. J Phys: Condens Matter. 2004;16:S4913–S4922.
  • Campbell A, Anderson V, van Duijneveldt JS, et al. Dynamical arrest in attractive colloids: the effect of long-range repulsion. Phys Rev Lett. 2005;94:208301 (1–4).
  • Cardinaux F, Stradner A, Schurtenberger P, et al. Modeling equilibrium clusters in lysozyme solutions. Europhys Lett. 2007;77:48004 (1–5).
  • Liu Y, Porcar L, Chen J, et al. Lysozyme protein solution with an intermediate range order structure. J Phys Chem B. 2011;115:7238–7247.
  • Lonetti B, Fratiny E, Chen SH, et al. Viscoelastic and small angle neutron scattering studies of concentrated protein solutions. Phys Chem Chem Phys. 2004;6:1388–1395.
  • Liu Y, Chen W-R, Chen S-H. Cluster formation in two-Yukawa fluids. J Chem Phys. 2005;122:44507–44519.
  • Broccio M, Costa D, Liu Y, et al. The structural properties of a two-Yukawa fluid: simulation and analytical results. J Chem Phys. 2006;124:084501 (1–9).
  • Costa D, Caccamo C, Bomont J-M, et al. Theoretical description of cluster formation in two-Yukawa competing fluids. Mol Phys. 2011;109:2845–2853.
  • Bomont J-M, Bretonnet J-L, Costa D, et al. Thermodynamic signatures of cluster formation in fluids with competing interactions. J Chem Phys. 2012;137:011101 (1–4).
  • Mladek BM, Gottwald D, Kahl G, et al. Formation of polymorphic cluster phases for a class of models of purely repulsive soft spheres. Phys Rev Lett. 2006;96:045701 (1–4).
  • Hoffmann N, Ebert F, likos CN, et al. Partial clustering in binary two-dimensional colloidal suspensions. Phys Rev Lett. 2006;97:078301 (1–4).
  • Hoffmann N, likos CN, Löwen H, Microphase structuring in two-dimensional magnetic colloid mixtures. J Phys: Condens Matter. 2006;18:10193–10211.
  • Kumar S, Mukherjee M, Mishra P. Structures and partial clustering in binary mixtures of colloidal particles interacting via repulsive power law potentials. J Mol Liq. 2014;197:84–92.
  • Mukherjee M, Kumar S, Mishra P. Clustering in binary mixtures of axial multipoles confined to a two-dimensional plane. Physica A. 2014;416:340–353.
  • Ebert F, Keim P, Maret G. Local crystalline order in a 2D colloidal glass former. Eur Phys J E. 2008;26:161–168.
  • Calvin DW, Reed III TM. Mixture rules for the Mie (n, 6) intermolecular pair potential and the Dymond-Alder pair potential. J Chem Phys. 1971;54:3733–3738.
  • Hopkins P, Archer AJ, Evans R. Pair-correlation functions and phase separation in a two-component point Yukawa fluid. J Chem Phys. 2006;124:054503 (1–10).
  • Hopkins P, Archer AJ, Evans R. Interfacial and wetting properties of a binary point Yukawa fluid. J Chem Phys. 2008;129:214709 (1–10).
  • Murray CA, van Winkle DH. Experimental observation of two-stage melting in a classical twodimensional screened Coulomb system. Phys Rev Lett. 1987;58:1200–1204.
  • Brunner M, Bechinger C, Strepp W, et al. Density-dependent pair interactions in 2D. Europhys Lett. 2002;58:926–932.
  • Fontecha AB, Schöpe HJ, König H, et al. A comparative study on the phase behaviour of highly charged colloidal spheres in a confining wedge geometry. J Phys: Condens Matter. 2005;17:S2779–S2786.
  • Chang E, Hone D. Melting of a two-dimensional colloidal crystal confined between charged plates. Europhys Lett. 1988;5:635–639.
  • Allahyarov E, D’Amico I, Löwen H. Effect of geometrical confinement on the interaction between charged colloidal suspensions. Phys Rev E. 1999;60:3199–3210.
  • Yoshizawa MYJYK, Wakabayashi N, Royall CP. Phase separation in binary colloids with charge asymmetry. Soft Matter. 2012;8:11732–11736.
  • Méndez-Alcaraz JM, Chávez-Páez M, D’Aguano B, et al. Structural properties of colloidal suspensions. Physica A. 1995;220:173–191.
  • Asgari R, Davoudi B, Tanatar B. Hard-core Yukawa model for two-dimensional charge-stabilized colloids. Phys Rev E. 2005;64:041406–412.
  • Hartmann P, Kalman GJ, Donkó Z, et al. Equilibrium properties and phase diagram of two-dimensional Yukawa systems. Phys Rev E. 2005;72:026409 (1–9).
  • Rosenberg RO, Thirumalai D. Order-disorder transition in colloidal suspensions. Phys Rev A. 1987;36:5690–5700.
  • Löwen H, Hansen JP, Madden PA. Nonlinear counterion screening in colloidal suspensions. J Chem Phys. 1993;98:3275–3289.
  • Allahyarov E,Löwen H. Nonadditivity in the effective interactions of binary charged colloidal suspensions. J Phys: Condens Matter. 2009;21:424117 (1–20).
  • Caillol JM, Levesque D, Weiss J-J. Theoretical determination of the dielectric constant of a two dimensional dipolar fluid. Mol Phys. 1981;44:733–760.
  • Talman JD. Numerical Fourier and Bessel transforms in logarithmic variables. J Comput Phys. 1978;29:35–48.
  • Heinen M, Allahyarov E, Löwen H. Highly asymmetric electrolytes in the primitive model: hypernetted chain solution in arbitrary spatial dimensions. J Comput Chem. 2014;35:275–279.
  • Rosenfeld Y, Ashcroft NW. Theory of simple classical fluids: universality in the short-range structure. Phys Rev A. 1979;20:1208–1235.
  • Rogers FJ, Young DA. New, thermodynamically consistent, integral equation for simple fluids. Phys Rev A. 1984;30:999–1007.
  • Graf H, Löwen H. Density jumps across phase transitions in soft-matter systems. Phys Rev E. 1998;57:5744–5753.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.