Publication Cover
Phase Transitions
A Multinational Journal
Volume 89, 2016 - Issue 5
361
Views
69
CrossRef citations to date
0
Altmetric
Original Articles

Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN2: an ab initio study

, , , &
Pages 480-513 | Received 06 Jun 2015, Accepted 25 Aug 2015, Published online: 26 Oct 2015

References

  • Niewa R, DiSalvo FJ. Recent developments in nitride chemistry. Chem Mater. 1998;10:2733–2752.
  • Metselaar R. Progress in the chemistry of ternary and quaternary nitrides. Pure Appl Chem. 2009;66:1815–1822.
  • Groen WA, Kraan MJ, de With G, et al. New covalent ceramics: MgSiN2. In: MRS Proceedings. Cambridge, UK:Cambridge University Press. 1993. p. 239–244.
  • Basalaev YM, Demushin PV, Nikolaeva EV, et al. Influence of the sublattice symmetry on the band structure of a MgSiN2 crystal. Russ Phys J. 2012;54:1145–1151.
  • Lenčéš Z, Hirao K, Šajgalík P, et al. Thermodynamic and dielectric properties of MgSiN2 ceramics. Key Eng Mater. 2006;317–318:857–860.
  • Hayashi H, Hirao K, Toriyama M, et al. MgSiN2 addition as a means of increasing the thermal conductivity of β-Silicon nitride. J Am Ceram Soc. 2001;84:3060–3062.
  • David J, Lang J. Sur un nitrure double de magnésium et de silicium [On a double nitride of magnesium and silicon]. CR Acad Sci Paris. 1965;261:1005–1007. French.
  • Groen WA, Kraan MJ, de With G. Preparation, microstructure and properties of MgSiN2 ceramics. J Eur Ceram Soc. 1993;12:413–420
  • David J, Laurent Y, Lang J. Structure de MgSiN2 et MgGeN2 [Structure of MgSiN2 and MgGeN2]. Bull Soc Fr Miner Cristallogr. 1970;93:153–159. French.
  • Harris RK, Leach MJ, Thompson DP. Nitrogen-15 and oxygen-17 NMR spectroscopy of silicates and nitrogen ceramics. Chem Mater. 1992;4:260–267.
  • Gaido GK, Dubrovskii GP, Zykov AM. Photoluminescence of MgSiN2 activated by europium. Izv Akad Nauk SSSR Neorg Mater. 1974;10:564–566.
  • Bruls RJ, Hintzen HT, de G With, et al. The temperature dependence of the Young's modulus of MgSiN2, AlN and Si3N4. J Eur Ceram Soc. 2001;21:263–2668.
  • Bruls RJ, Hintzen HT, de With G, et al. The temperature dependence of the Grüneisen parameters of MgSiN2, AlN and β-Si3N4. J Phys Chem Solids. 2001;62:783–792.
  • Bruls RJ, Hintzen HT, Metselaar R, et al. Anisotropic thermal expansion of MgSiN2 from 10 to 300 K as measured by neutron diffraction. J Phys Chem Solids. 2000;61:1285–1293.
  • Bruls RJ, Hintzen HT, Metselaar R, et al. Heat capacity of MgSiN2 between 8 and 800 K. J Phys Chem B. 1998;102:7871–7876.
  • Sekine T, Kobayashi T, Hintzen HT. Shock compression of magnesium silicon nitride. In: Elert M, Furnish MD, Cliau R, Holmes N, J. Nguyen J, editors. AIP Conf Proc; 2007; p. 189–192.
  • Andrade M, Dzivenko D, Miehe G, et al. High-pressure high-temperature synthesis and structure of β-MgSiN2. Phys Status Solidi RRL. 2011;5:196–198.
  • Romer SR, Kroll P, Schnick W. A density functional study of the high-pressure chemistry of MSiN2 (M = Be, Mg, Ca): prediction of high-pressure phases and examination of pressure-induced decomposition. J Phys Condens Matter. 2009;21:275407–275415.
  • Petukhov AG, Lambrecht WRL, Segall B. Electronic structure of wide-band-gap ternary pnictides with the chalcopyrite structure. Phys Rev B. 1994;49:4549–4558.
  • Misaki T, Xiaoping W, Wakahara A, et al. Theoretical analysis of multinary nitride semiconductors by density functional theory. In: Proceedings of International Workshop Nitride Semiconductors, IPAP Conf. Series 1; 2000; p. 685–688.
  • Fang CM, de Groot RA, Bruls RJ, et al. Ab initio band structure calculations of Mg3N2 and MgSiN2. J Phys Condens Matter. 1999;11:4833–4842.
  • Huang JY, Tang LC, Lee MH. Ab initio study of the structural and optical properties of orthorhombic ternary nitride crystals. J Phys Condens Matter. 2001;13:10417–10431.
  • Tang LC, Chang YC, Huang JY, et al. Investigation of the electronic, linear, and second-order nonlinear optical properties for the wide band gap chalcopyrite ternary nitrides. In: Yin S, Guo S, editors. Photonic fiber and crystal devices: advances in materials and innovations in device applications II, 705605. Proc. SPIE 7056; 2008 August 25: San Diego, USA. 705605–705605-9.
  • Fang CM, Hintzen HT, De WITH G. High-pressure phases of MgSiN2 from first-principles calculations. Appl Phys A. 2004;78:717–719.
  • Douakha N, Holzapfel M, Chappel E, et al. Nuclear and magnetic structure of layered LiFe1−xCoxO2 (0 ≤ x ≤ 1) determined by high-resolution neutron diffraction. J Solid State Chem. 2002;163:406–411.
  • Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter. 2002;14:2717–2744.
  • Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41:7892–7895.
  • Pedrew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1992;46:6671–6687.
  • Perdew JP, Burke K, Ernzerhof M. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett. 2008;10:136406–136409.
  • Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett. 1980;45:566–569.
  • Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B. 1981;23:5048–5079.
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–5192.
  • Fischer TH, Almlof J. General methods for geometry and wave function optimization. J Phys Chem. 1992;96:9768–9774.
  • Blanco MA, Francisco E, Luana V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun. 2004;158:57–72.
  • Wu MM, Wen L, Tang BY, et al. First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy. J Alloys Compd. 2010;506:412–417.
  • Murnaghan FD. The compressibility of media under extreme pressures. Proc Natl Acad Sci. 1944;30:244–247.
  • Birch F. Elasticity and constitution of the Earth's interior. J Geophys Res. 1952;57:227–286.
  • Birch F. Finite strain isotherm and velocities for single crystal and polycrystalline NaCl at high pressures and 300 K. J Geophys Res. 1978;83:1257–1268.
  • Vinet P, Rose JH, Ferrante J, et al. Universal features of the equation of state of solids. J Phys Condens Matter. 1989;1:1941–1963.
  • Ravindran P, Fast L, Korzhavyi PA, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys. 1998;84:4891–4904.
  • Nye JF. Physical properties of crystals: their representation by tensors and matrices. New York, NY: Oxford University Press; 1985.
  • Bouhemadou A, Khenata R, Bin-Omran S, et al. Structural, elastic, electronic and optical properties of new layered semiconductor BaGa2P2. Opt Mater. 2015;46:122–130
  • Sin'ko GV, Smirnov NA. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J Phys Condens Matter. 2002;14:6989–7005.
  • Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle [Calculation of the yield point of mixed crystals due to the plasticity condition of single crystals]. Z Angew Math Mech. 1929;9:49–58. German.
  • Voigt W. Lehrbuch der kristallphysik [Textbook of Physics Cristal]. Leipzig, Germany: Teubner BG; 1928.
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A. 1952;65:349–354.
  • Hill R. Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids. 1963;11:357–372.
  • Ross J. Angel , Jackson JM, et al. Elasticity measurements on minerals: a review. Eur J Miner. 2009;21:525–550.
  • Ranganathan SI, Ostoja-Starzewski M. Universal elastic anisotropy index. Phys Rev Lett. 2008;101:055504–055507.
  • Pugh SF. Relations between the elastic moduli and plastic properties of polycrystalline pure metals. Philos Mag. 1954;45:823–843.
  • Gilman JJ. Chemistry and physics of mechanical hardness. Hoboken, NJ: John Wiley & Sons; 2009.
  • Xing-Qiu C, Haiyang N, Dianzhong L, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics. 2011;19:1275–1281.
  • El Sayed Y, Amin El-Adawy N. El-KheshKhany , Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Commun. 2006;139:108–113.
  • Zhang RF, Veprek S, Argon AS, Mechanical and electronic properties of hard rhenium diboride of low elastic compressibility studied by first-principles calculation, Appl Phys Lett. 2007;91:201914–201916.
  • Anderson OL. A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids. 1963;24:909–917.
  • Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B. 1992;46:6131–6140.
  • Okoye CMI. Structural, elastic and electronic structure of LiCu2Si, LiCu2Ge and LiAg2Sn intermetallic compounds. Comp Mater Sci. 2014;92:141–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.