Publication Cover
Phase Transitions
A Multinational Journal
Volume 90, 2017 - Issue 7
129
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Table-like magnetocaloric effect involving the enhancement of refrigerant capacity in (AMn0.9Ti0.1O3)1−x/(AMn0.85Ti0.15O3)x composite

ORCID Icon
Pages 687-694 | Received 04 Aug 2016, Accepted 23 Oct 2016, Published online: 01 Dec 2016

References

  • Pecharsky VK, Gschneiner KA. Magnetocaloric effect and magnetic refrigeration. J Magn Magn Mater. 1999;200:44–56.
  • Paticopoulos SC, Caballero-Flores R, Franco V, et al. Enhancement of the magnetocaloric effect in composites: Experimental validation. Solid State Commun. 2012;152:1590–1594.
  • M'nassri R. Enhancement of refrigeration capacity and table-like magnetocaloric effect in LaFe10.7Co0.8Si1.5/La0.6Pr0.4Fe10.7Co0.8Si1.5 composite. J Supercond Nov Magn. 2016;29:207–213.
  • Tegus O, Brück E, Buschow, KHJ, et al. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 2002;415:150–152.
  • Pecharsky VK, Gschneidner Jr KA. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett. 1997;78:4494–4497.
  • Hu FX, Shen B, Sun J, et al. Large magnetic entropy change in La(Fe ,Co )11.83Al1.17. Phys Rev B. 2001;64:012409-1–012409-4.
  • Hu FX, Shen B, Sun J. Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy. Appl Phys Lett. 2000;76:3460–3462.
  • Hu FX, Shen BG, Sun JR, et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl Phys Lett. 2001;78:3675–3677.
  • Bjørk R, Bahl CRH, Katter M. Magnetocaloric properties of LaFe13−x−yCoxSiy and commercial grade Gd. J Magn Magn Mater. 2010;322:3882–3888.
  • Fujieda S, Fujita A, Fukamichi K. Large magnetocaloric effect in La(FexSi1−x)13 itinerant-electron metamagnetic compounds. Appl Phys Lett. 2002;81:1276–1278.
  • Swamy NK, Kumar NP, Reddy PV, et al. Specific heat and magnetocaloric effect studies in multiferroic YMnO3. J Therm Anal Calorim. 2015;119:1191–1198.
  • Phan MH, Yu SC. Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater. 2007;308:325–340.
  • Phong PT, Khiem NV, Dai NV, et al. Low-field magnetoresistance of (1−x)La0.7Ca0.3MnO3+xAg composites. J Alloys Compd. 2009;484:12–16.
  • M'nassri R, Chniba-Boudjada N, Cheikhrouhou A. Nearly constant magnetic entropy change involving the enhancement of refrigerant capacity in (La0.6Ba0.2Sr0.2MnO3)1−x/(Co2O3)x composite. J Ceram Int. 2016;42:7447–7454.
  • Mbarek H, M'nasri R, Cheikhrouhou‐Koubaa W, et al. Magnetocaloric effect near room temperature in (1−y)La0.8Ca0.05K0.15MnO3/yLa0.8K0.2MnO3 composites. Phys Status Solidi. 2014;211:975–979.
  • Wood ME, Potter WH. General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics. 1985; 25:667–683.
  • Zheng XQ, Wu H, Chen J, et al. The physical mechanism of magnetic field controlled magnetocaloric effect and magnetoresistance in bulk PrGa compound. Sci Rep. 2015;5:14970-1–14970-11.
  • Reid CE, Barclay JA, Hall JL, et al. Selection of magnetic materials for an active magnetic regenerative refrigerator. J Alloys Comp. 1994;207:366–371.
  • Shir F, Yanik L, Bennett LH, et al. Room temperature active regenerative magnetic refrigeration: magnetic nanocomposites. J Appl Phys. 2003;93:8295–8297.
  • Tishin AM, Spichkin YI. The magnetocaloric effect and its applications. Bristol: IOP Publishing; 2003.
  • Wang JJ, Han ZD, Tao Q, et al. Constant magnetothermal response in two-layered perovskite (La1−xGdx)1.4Ca1.6Mn2O7. Physica B. 2013;416:76–80.
  • Świerczek J, Mydlarz T. Magnetic entropy changes at early stages of nanocrystallization in amorphous Fe90Zr7B3 ribbons. J Alloys Comp. 2011;509:9340–9345.
  • Álvarez P, Gorria P, Llamazares JLS, et al. Magnetic properties and magnetocaloric effect in pseudo-binary intermetallic (Ce,R)2Fe17 compounds (R = Y, Pr and Dy). Intermetallics. 2011;19:982–987.
  • Álvarez P, Gorria P, Franco V, et al. Nanocrystalline Nd2Fe17 synthesized by high-energy ball milling: crystal structure, microstructure and magnetic properties. J Phys: Condens Matter. 2010;22:216005-1–216005-1.
  • Zhong W, Chen W, Au CT, et al. Dependence of the magnetocaloric effect on oxygen stoichiometry in polycrystalline La2/3Ba1/3MnO3–δ. J Magn Magn Mater. 2003;261:238–243.
  • Smith A, Bahl CRH, Bjørk R, et al. Materials challenges for high performance refrigeration devices. Adv Energy Mater. 2012;2:1288–1318.
  • Dhahri A, Dhahri J, Hlil EK, et al. Effect of Ti-substitution on magnetic and magnetocaloric properties of La0.57Nd0.1Pb0.33MnO3. J Alloys Comp. 2012;530:1–5.
  • Hamad MA. Prediction of thermomagnetic properties of La0.67Ca 0.33MnO3 and La0.67 Sr 0.33MnO3. Phase Transitions. 2012;85:106–112.
  • M'nassri R, Cheikhrouhou A. Magnetocaloric effect in different impurity doped La0.67Ca0.33MnO3 composite. J Supercond Nov Magn. 2014;27:421–425.
  • Tka E, Cherif K, Dhahri J, et al. Effects of nonmagnetic aluminum Al doping on the structural, magnetic and transport properties in La0.57Nd0.1Sr0.33MnO3 manganite oxide. J Alloys Comp. 2011;509:8047–8055.
  • Wang GF, Zhao ZR, Li HL, et al. Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite. J Ceram Int. 2015;41:9035–9040.
  • Smaili A, Chahine R. Thermodynamic investigations of optimum active magnetic regenerators. Cryogenics. 1998;38:247–252.
  • Alvarez P, Llamazares JLS, Gorria P, et al. Enhanced refrigerant capacity and magnetic entropy flattening using a two-amorphous FeZrB(Cu) composite. Appl Phys Lett. 2011;99:232501-1–232501-3.
  • Takeya H, Pecharsky VK, Gschneidner KA, et al. New type of magnetocaloric effect: implications on low-temperature magnetic refrigeration using an Ericsson cycle. Appl Phys Lett. 1994;64:2739–2741.
  • M'nassri R. Enhanced refrigerant capacity and magnetic entropy nearly flattening in (La2/3Ba1/3MnO3)1−x/(La2/3Ba1/3 MnO2.98)x composite. J Supercond Nov Magn. 29:2016;1879–1885.
  • Gorria P, Llamazares JLS, Álvarez P, et al. Relative cooling power enhancement in magneto-caloric nanostructured Pr2Fe17. J Phys D: Appl Phys. 2008;41:192003-1–192003-5.
  • Barclay JA. Active and passive magnetic regenerators in gas/magnetic refrigerator. J Alloys Comp. 1994;207:355–361.
  • Aliev AM, Gamzatov AG, Kamilov KI, et al. Magnetocaloric properties of La0.7Ca0.3Mn16O3 and La0.7Ca0.3Mn18O3 manganites and their “sandwich”. Appl Phys Lett. 2012;101:172401-1–172401-4.
  • Foldeaki M, Chahine R, Bose TK. Magnetic measurements: A powerful tool in magnetic refrigerator design. J Appl Phys. 1995;77:3528–3537.
  • Yang H, Zhu YH, Xian T, et al. Synthesis and magnetocaloric properties of La0.7Ca0.3MnO3 nanoparticles with different sizes. J Alloys Compd. 2013;555:150–155.
  • Zhang XX, Wen GH, Wang FW, et al. Magnetic entropy change in Fe-based compound LaFe10.6Si 2.4. Appl Phys Lett. 2000;77:3072–3074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.