Publication Cover
Phase Transitions
A Multinational Journal
Volume 91, 2018 - Issue 1
2,726
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Phase transition of ZnS at high pressures and temperatures

ORCID Icon &
Pages 9-14 | Received 09 Mar 2017, Accepted 14 Jun 2017, Published online: 14 Jul 2017

References

  • Samara GA, Drickamer HG. Pressure induced phase transitions in some II-VI compounds, J Phys Chem Solids, 1962;23:457–461.
  • Smith PL, Martin JE. The high-pressure structures of zinc sulfide and zinc selenide. Phys Lett. 1965;19:541–543.
  • Piermarini GJ, Block S. Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressure in relation to the fixed point pressure scale. Rev Sci Instrum. 1975;46:973–979.
  • Weinstein BA. Phonon dispersion of zinc chalcogenide under extreme pressure and the metallic transformation. Solid State Commun. 1997;24:595–598.
  • Yu SC, Spain LL, Skelton EF. High pressure phase transitions in tetrahedrally coordinated semiconducting compounds. Solid State Commun. 1978;25:49–52.
  • Onodera A, Ohtani A. Fixed points for pressure calibration above 100 kbars related to semiconductor-metal transitions. J Appl Phys. 1980;51:2581–2585.
  • Gust WH. Shock induced transition stresses for zinc sulfide and zinc selenide. J Appl Phys. 1982;53:4843–4846.
  • Tiong AR, Hiramatsu M, Matsushima Y, et al. The phase transition pressures of zincsulfoselenide singe crystals. Japan J Appl Phys. 1989;28:291–292.
  • Ves S, Schwarz U, Christensen NE, et al. Cubic ZnS under pressure: optical-absorption edge, phase transition, and calculated equation of state. Phys Rev B. 1990;42:9113–9118.
  • Zhou Y, Campbell AJ, Heinz DL. Equations of state and optical properties of the high pressure phase of zinc sulfide. J Phys Chem Solids. 1991;52:821–825.
  • Uchino M, Mashimo T, Kodama M, et al. Phase transition and EOS of zinc sulfide (ZnS) under shock and static compressions up to 135 GPa. J Phys Chem Solids 1999;60:827–837.
  • Desgreniers S, Beaulieu L, Lepage I. Pressure-induced structural changes in ZnS. Phys Rev B. 2000;62:8726–8733.
  • Singh RK, Singh S. High pressure phase transitions and variation of elastic constants of some II-VI semiconductors. Phase Transit. 1989;15:127–134.
  • Jaffe JE, Pandey R, Seel MJ. Ab initio high-pressure structural and electronic properties of ZnS. Phys Rev B. 1993;47:6299–6303.
  • Nazzal A, Qteish A. Ab initio pseudopotential study of the structural phase transformations of ZnS under high pressure. Phys Rev B. 1996;53:8262–8266.
  • Catti M. First-principles study of the orthorhombic mechanism for the B3/B1 high-pressure phase transition of ZnS. Phys Rev B. 2002;65:224115. DOI:10.1103/PhysRevB.65.224115.
  • Gangadharan R, Jayalakshmi V, Kalaiselvi J, et al. Electronic and structural properties of zinc chalcogenides ZnX (X = S, Se, Te). J Alloys Compd. 2003;359:22–26. DOI:10.1016/S0925-8388(03)00188-9.
  • Chen XR, Li XF, Cai LC, et al. Pressure induced phase transition in ZnS. Solid State Commun. 2006;139:246–249. DOI:10.1016/j.ssc.2006.05.043.
  • Bilge M, Özdemir S, Kart HH, et al. B3-B1 phase transition and pressure dependence of elastic properties of ZnS. Mater Chem Phys 2008;111:559–564. DOI:10.1016/j.matchemphys.2008.05.012.
  • Durandurdu M. Pressure-induced phase transition in wurtzite ZnS: an ab initio constant pressure study. J Phys Chem Solids. 2009;70:645–649. DOI:10.1016/j.jpcs.2009.01.008.
  • Bean VE, Akimoto S, Bell PM, et al. Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report. Physica B+C. 1986;139:52–54.
  • Suzuki T, Yagi T, Akimoto S. Precise determination of transition pressure of GaAs. Proceedings of the 22nd High Pressure Conference; 1981, Hiroshima; JSHPST; p. 8–9.
  • Ono S, Kikegawa T. Determination of the phase boundary of GaP using in situ high pressure and high-temperature X-ray diffraction. High Press Res. 2017;37:28–35. DOI:https://doi.org/10.1080/08957959.2016.1269900
  • Ono S, Kikegawa T. Determination of the phase boundary of the omega to beta transition in Zr using in situ high-pressure and high-temperature X-ray diffraction. J Solid State Chem. 2015;225:110–113. DOI:10.1016/j.jssc.2014.12.006.
  • Dorogokupets PI, Dewaele A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press Res. 2007;27:431–446. DOI:10.1080/08957950701659700.
  • Bassett WA, Shen AH, Bucknum M, et al. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from −190 to 1200 °C. Rev Sci Instrum. 1993;64:2340–2345.
  • Ono S, Mibe K, Ohishi Y. Raman spectra of culet face of diamond anvils and application as optical pressure sensor to high temperatures. J Appl Phys. 2014;116:053517. DOI:10.1063/1.4891681.
  • Ito E. Theory and practice-multianvil cells and high-pressure experimental methods. In: Price GD, Schubert G, editors. Treatise on geophysics. Vol. 2, Mineral physics. Elsevier, Amsterdam; 2007. p. 197–230.
  • Piermarini GJ, Block S, Barnett JD, et al. Calibration of pressure-dependence of r1 ruby fluorescence line to 195 kbar. J Appl Phys. 1975;46:2774–2780.
  • Mao HK, Xu J, Bell PM. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res. 1986;91:4673–4676.
  • Holzapfel WB. Refinement or the ruby luminescence pressure scale. J Appl Phys. 2003;93:1813–1818.
  • Kusaba K, Syono Y, Kikegawa T. Phase transition of ZnO under high pressure and temperature. Proc Japan Acad. 1999;75:1–6.
  • Zhang J, Li B, Utsumi W, et al. In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Miner. 1996;23:1–10.