134
Views
13
CrossRef citations to date
0
Altmetric
Articles

Origin of the colossal permittivity of (Nb + In) co-doped rutile ceramics by wide-range dielectric spectroscopy

, , &
Pages 932-941 | Received 18 May 2018, Accepted 12 Jul 2018, Published online: 19 Jul 2018

References

  • Tan Q , Irwin P , Cao Y. Advanced dielectrics for capacitors. IEEJ Trans Fund Mat. 2006;126:1153–1159. doi: 10.1541/ieejfms.126.1153
  • Bovtun V , Kempa M , Nuzhnyy D , et al. Microwave absorbing and shielding properties of inhomogeneous conductors and high-loss dielectrics. Ferroelectrics. in press.
  • Kremer F , Schönhals A. Eds. Broadband dielectric spectroscopy. Berlin : Springer; 2003.
  • Homes CC , Vogt T , Shapiro SM , et al. Optical response of high-dielectric-constant perovskite-related oxide. Science. 2001;293:673–676. doi: 10.1126/science.1061655
  • Lunkenheimer P , Krohns S , Riegg S , et al. Colossal dielectric constants in transition-metal oxides. Eur Phys J Special Topics. 2010;180:61–89. doi: 10.1140/epjst/e2010-01212-5
  • Valdez-Nava Z , Cheballah C , Laudebat L , et al. Colossal dielectric permittivity materials: Myths and reality. Conf. Proc. ISEIM 2014. 2014.
  • Krohns S , Lunkenheimer P , Kant C , et al. Colossal dielectric constant up to gigahertz at room temperature. Appl Phys Lett. 2009;94:122903/1–3. doi: 10.1063/1.3105993
  • Wu JB , Nan CW , Lin YH , et al. Giant dielectric permittivity observed in Li and Ti doped NiO. Phys Rev Lett. 2002;89:217601/1–4.
  • Song Y , Wang X , Zhang X , et al. The contribution of doped-Al to the colossal permittivity properties of Al x Nb0.03Ti0.97−x O2 rutile ceramics. J Mater Chem C. 2016;4:6798–6805. doi: 10.1039/C6TC00742B
  • Song Y , Wang X , Zhang X , et al. Colossal dielectric permittivity in (Al + Nb) co-doped rutile SnO2 ceramics with low loss at room temperature. Appl Phys Lett. 2016;109:142903/1–5.
  • Wang ZJ , Cao MH , Yao ZH , et al. Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere. J Eur Ceram Soc. 2014;34:1755–1760. doi: 10.1016/j.jeurceramsoc.2014.01.015
  • Valdez-Nava Z , Guillemet-Fritsch S , Tenailleau C , et al. Colossal dielectric permittivity of BaTiO3-based nanocrystalline ceramics sintered by spark plasma sintering. J Electroceram. 2009;22:238–244. doi: 10.1007/s10832-007-9396-8
  • Han H , Voisin C , Guillemet-Fritsch S , et al. Origin of colossal permittivity in BaTiO3 via broadband dielectric spectroscopy. J Appl Phys. 2013;113:024102/1–8.
  • Hu WB , Liu Y , Withers RL , et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater. 2013;12:821–826. doi: 10.1038/nmat3691
  • Homes CC , Vogt T. Colossal permittivity materials doping for superior dielectrics. Nat Mater. 2013;12:782–783. doi: 10.1038/nmat3744
  • Li J , Li F , Zhuang Y , et al. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics. J Appl Phys. 2014;116:074105/1–9.
  • Li J , Li F , Li C , et al. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics. Sci Rep. 2015;5:8295/1–6.
  • Song Y , Wang X , Sui Y , et al. Origin of colossal dielectric permittivity of rutile Ti‌0.9In0.05Nb0.05O2: single crystal and polycrystalline. Sci Rep. 2016;6:21478/1–8.
  • Krohns S , Lunkenheimer P , Meissner S , et al. The route to resource-efficient novel materials. Nat Mater. 2011;10:899–901. doi: 10.1038/nmat3180
  • Pandey RK , Stapleton WA , Tate J , et al. Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 2013;3:062126/1–13.
  • Kant CH , Rudolf T , Mayr F , et al. Broadband dielectric response of CaCu‌‌3Ti4O12: from dc to the electronic transition regime. Phys Rev B. 2008;77:045131/1–7. doi: 10.1103/PhysRevB.77.045131
  • Ferrarelli MC , Nuzhnyy D , Sinclair DC , et al. Soft-mode behavior and incipient ferroelectricity in Na‌‌1/2Bi1/2Cu3Ti4O12 . Phys Rev B. 2010;81:224112/1–7. doi: 10.1103/PhysRevB.81.224112
  • Crandles DA , Yee SMM , Savinov M , et al. Electrode effects in dielectric spectroscopy measurements on (Nb + In) co-doped TiO2 . J Appl Phys. 2016;119:154105/1–8. doi: 10.1063/1.4947185
  • Bovtun V , Petzelt J , Kempa M , et al. Wide range dielectric and infrared spectroscopy of (Nb + In) co-doped rutile ceramics. Phys Rev Mater. in press.
  • Kawarasaki M , Tanabe K , Terasaki I , et al. Intrinsic enhancement of dielectric permittivity in (Nb + In) co-doped TiO2 single crystals. Sci Rep. 2017;7:5351/1–6. doi: 10.1038/s41598-017-05651-z
  • Taniguchi H , Ando K , Terasaki I. Enhancement of the dielectric permittivity of (Nb‌‌1/2In1/2)0.02Ti0.98O2 single crystals at low temperatures due to (Nb + In) codoping. Jpn J Appl Phys. 2017;56:10PC02/1–3. doi: 10.7567/JJAP.56.060307
  • Nuzhnyy D , Savinov M , Bovtun V , et al. Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly(ethylene terephthalate) around their low percolation threshold. Nanotechnology. 2013;24:055707/1–9. doi: 10.1088/0957-4484/24/5/055707
  • Gervais F , Piriou B. Temperature dependence of transverse- and longitudinal-optic modes in TiO2 (rutile). Phys Rev B. 1974;10:1642–1654. doi: 10.1103/PhysRevB.10.1642
  • Petzelt J , Nuzhnyy D , Bovtun V , et al. Broadband dielectric and conductivity spectroscopy of inhomogeneous and composite conductors. Phys Status Solidi A. 2013;210:2259–2271. doi: 10.1002/pssa.201329288
  • Petzelt J. Dielectric grain-size effect in high-permittivity ceramics. Ferroelectrics. 2010;400:117–134. doi: 10.1080/00150193.2010.505511
  • Petzelt J , Rychetský I , Nuzhnyy D. Dynamic ferroelectric-like softening due to the conduction in disordered and inhomogeneous systems: giant permittivity phenomena. Ferroelectrics. 2012;426:171–193. doi: 10.1080/00150193.2012.671732

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.